
��������	

Designing Embedded TCP/IP
Monitor and Control

Lab Manual

��������	

����
���	

6-2

The Microchip name, logo, The Embedded Control Solutions Company, PIC, PICmicro, PICSTART, PICMASTER,
PRO MATE, MPLAB, SEEVAL, KEELOQ and the KEELOQ logo are registered trademarks, In-Circuit Serial Programming,

ICSP, microID, are trademarks of Microchip Technology Incorporated in the USA and other countries.
Windows is a registered trademark of Microsoft Corporation.

SPI is a trademark of Motorola.
I2C is a registered trademark of Philips Corporation.

Microwire is a registered trademark of National Semiconductor Corporation.
All other trademarks herein are the property of their respective companies.

 © 2008 Microchip Technology Incorporated. All rights reserved.
“Information contained in this publication regarding device applications and the like is intended through suggestion only and may be super-
seded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy of such information, or infringement of patents arising from any such use of otherwise. Use of Microchip’s products as critical compo-
nents in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or

otherwise, under any intellectual property rights.”

����
���	

 i-3

Designing Embedded TCP/IP
Monitor and Control

Lab Background/Flow, Solutions & Symbols:

Exercise Background and Flow:

Many embedded applications can be functionally enhanced if the designer includes the ability to
access the system via the existing internet infrastructure. This concept was the focus of a webi-

nar series, available on www.microchip.com/ethernet, that discusses adding Ethernet networking
capability to a soda vending machine. That webinar series was the basis for developing this class
and the 6 associated labs.

The user can choose one of 3 MCU platforms: 1) PIC18F, 2)PIC24F or 3)PIC32MX. Three MAC/
PHY options are also available in the class. The PIC18F, via the PICDEM.net 2 board offers an
integrated MAC/PHY or an external ENC28J60. The latter two offer one of three MAC/PHYs:
ENC28J60 10Mbps, ENC624J600 10/100 Mbps, or MRF24WB0 wireless 1-2Mbps all via the
Ethernet PICTail Plus modules This choice is facilitated in the source files via #if defines shown in
HardwareProfile.h header file.

Lab1-Join the Network-starts by using a demo application from the Microchip TCPIP stack distribu-
tion then utilizes the TCPIPConfig utility to set the development board up for the balance of the
labs. Completion of this lab is required as the board’s assigned MAC address and user-specified
board name is copied to the subsequent labs files via the Replicate HWConfig.bat routine via the
TCPIPConfig.h file.

Lab 2 is an exercise in designing an business card image on a HTML/CSS web page. Since this is
a practice exercise the files are erased during subsequent labs. However, the user is given modifi-
able vending machine web pages to use for Labs 3 thru 6. These labs steer the user thru the proc-
ess of integrating the vending machine application code with the TCP/IP stack, removing blocking
code for maximum performance, and customizing for monitoring and controlling remote apps.

All the files used in these exercises have been loaded into the C\RTC\COM4201\ directories along
with the most recent version of the Microchip released TCP/IP stack. When newer stacks are web-
downloaded, they are stored in a C:\Microchip Solutions folder during normal install. The applica-
tions used in this class are available in the most recent stack versions.

Solutions:
All but Lab 1 have solution projects available in their respective
folders. However, for some labs just compiling the MCU solution
is not adequate to complete the exercise. When using a solution
workspace and it’s associated completed firmware entries refer to
the enclosed table for a starting point to complete the exercise.

Solution Steps

Lab 3: Step 8

Lab 4: Step 6

Lab 5: Step 14

Lab 6: Step 3

����
���	

6-4

Each compiler, facilitated by the HardwareProfile.h file and partially shown below, can determine the Microchip develop-
ment platform used based on the compiler and part selected within the MPLAB project. Unique versions of this file are
needed to differentiate between the MAC/PHY choices in the class. This is handled by TCPIP HWConfig.bat in Lab 1.

HardwareProfile.h
// Choose which hardware profile to compile for here. See
// the hardware profiles below for meaning of various options.
//#define PICDEMNET2
//#define HPC_EXPLORER
//#define PICDEMZ
//#define PIC24FJ64GA004_PIM // Explorer 16, but with the PIC24FJ64GA004 ...
//#define EXPLORER_16 // PIC24FJ128GA010, PIC24HJ256GP610, ...
//#define DSPICDEM11
//#define DSPICDEMNET1 // Not currently supported, wrong Ethernet ...
//#define DSPICDEMNET2 // Not currently supported, wrong Ethernet ...
//#define YOUR_BOARD

// If no hardware profiles are defined, assume that we are using
// a Microchip demo board and try to auto-select the correct profile
// based on processor selected in MPLAB
#if !defined(PICDEMNET2) && !defined(HPC_EXPLORER) && !defined(PICDEMZ) && ...
 #if defined(__18F97J60) || defined(_18F97J60)
 #define PICDEMNET2
 #elif defined(__18F67J60) || defined(_18F67J60)
 #define INTERNET_RADIO
 #elif defined(__18F8722) || defined(__18F87J10) || defined(_18F8722) ...
 #define HPC_EXPLORER

Symbols

�

Procedural Commands to be executed

BACKGROUND and PURPOSE of the Lab

PC configuration for the lab.

Code Analysis and Conclusions of the lab Target results of the lab

Sections of Ansi-C code

Helpful information for completing the lab2

Sections of HTML/CSS code

Code Analysis-HardwareProfile.h

Cautions or warnings about frequent mistakes

����
���	

 i-5

Table of Contents

Lab Exercise 1: Join the Network ... 1-1
Lab Exercise 2: Using Wireshark for Protocol Debugging .. 2-1
Lab Exercise 3: Integrating an Application with the Stack .. 3-1
Lab Exercise 4: Remove Blocking Code ... 4-1
Lab Exercise 5: Web Based Monitoring with Dynamic Variables 5-1
Lab Exercise 6: Web Based Control via the GET Method .. 6-1
Appendix A: Working with MPLAB-X .. A-1
Appendix B: Additional Exercise: Creating a Simple Web Page B-1

��������	

1-1

Lab Exercise 1
Join the Network

Purpose

Requirements

Objectives

Software: TCPIPConfig Wizard from 1538 Lab Build Installer v1.536
Environment: MPLAB® IDE 8.60 or later or X, 1538 Lab Build Installer 1.536
C Compiler: MPLAB C18 v3.38 or later, C30 v3.30 or later, or C32 v1.12 or later
H/W Tools: PIC18F: PICDEM.netTM 2, or
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0 or
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0
 AND MPLAB Real ICE™ , MPLAB ICD3
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\Lab1...

Before a device can be connected to a network, it needs a unique host name and MAC address. This ensures that the device
can communicate independently with other network nodes, and prevents duplicate addresses on the network.
In this first lab, the TCPIPConfig Wizard will be used to configure a unique address for your development hardware.
These changes will be written to a configuration file named TCPIPConfig.h that is included in the project file, and will
be compiled into the COM4201 WiFi Demo App project. To finish the lab, you will upload a set of example web pages
and test the network connection.

• Configure the lab class hardware platform and ensure it is connected to the local LAN.
• Use the TCPIP Config Utility to make specify the hardware configuration.

Procedures

If you have a previous MPLAB project open, you must first close it by selecting from the menu:
������������������������������������� �� � ��	 �
� � �
 � �� �� � ��	 �
� � �
 � �� �� � ��	 �
� � �
 � �� �� � ��	 �
� � �
 � �����
����
� � � ��
� ��� ���� ��� � �� � �� �
�� ��
� ��� �� �
��� �� � �� �� �
�� � ��� ��� ������ ��
� � �� � �� � �� � � ��
� ��� ���� ��� � �� � �� �
�� ��
� ��� �� �
��� �� � �� �� �
�� � ��� ��� ������ ��
� � �� � �� � �� � � ��
� ��� ���� ��� � �� � �� �
�� ��
� ��� �� �
��� �� � �� �� �
�� � ��� ��� ������ ��
� � �� � �� � �� � � ��
� ��� ���� ��� � �� � �� �
�� ��
� ��� �� �
��� �� � �� �� �
�� � ��� ��� ������ ��
� � �� � �� � �����

Project Directory:
 C:\Masters\1538\Lab1*

�

����
���	

 i-2

Network Configuration

Ensure only the Web Server box is checked in the next two screens-Module Selection and Example Modules:
�

Module Selection

	

Launch the TCPIP Config Wizard to modify the TCPIPConfig.h.
� �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ��������������� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��������������� � ! �� � ! �� � ! �� � ! �������������" � � #� � � � ��� �	 �$

� �" � � #� � � � ��� �	 �$

� �" � � #� � � � ��� �	 �$

� �" � � #� � � � ��� �	 �$

� �����
Browse to ENSURE the Lab1\Configs directory shown below. Check the CONFIGURE WIRELESS SET-
TINGS if using the WiFi module. Confirm that Show Advanced Settings is not checked. Select NEXT.����

��������	

1-3

Example Modules

Define and enter a unique host name for your board on the NETWORK CONFIGURATION screen
shown below. The name must be 15 characters or less, and cannot contain \ / : * ? " ; |

Network Configuration

�

�

If using PICDEM.net 2 or 10Mbps PicTail plus module, Enter the last 3 bytes of the MAC address field, in hex
corresponding to the Ethernet serial decimal number printed on the label. If using the 10/100 PICtail Plus or
the ZG2100, ensure that the last 3 hexadecimal digits are 00-00-00.

For wired configurations with the ENC28J60 or ENCx24J600
Click Next thru the following screens, and click Finish to complete the session.
Skip to STEP 6 to continue the configuration process.

Microchip assigned Ethernet MAC address decimal numbers are labeled on the wired
10Mbps PICTail Plus module or on the back of the PICDEM.net 2 development board.
When using either of these, step 5 will require you to convert the Ethernet decimal number
to a hex MAC address using the Windows calculator, left pad with zeros. If the number is
not present, select a unique 6 digit hex number and continue.Eg.12345 = 00:30:39 hex.
10/100Mbps PICTail and MRF24WB0 have preprogrammed MAC addresses, so click
NEXT thru step 5.

�

�

��������	

 1-4

For wireless configurations using MRF24WB0 PICtail Plus Module:
Check the appropriate boxes for the regional configurations in the 2 screens below:
Click Next thru the following screens (no Security, no Web page change, no MPFS image change), until
Click Finish to complete the utility session.
Continue to Step 6 to continue the configuration process.

Network Configuration

Network Configuration

��������	

1-5

� � % & ' �������� � % & ' �������� � % & ' �������� � % & ' �������������������(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �����
����
Lab1-C18-PICDN2-ETH97.Xfor the PICDEM.net 2 with internal MAC/PHY setup
Lab1-C18-PICDN2-MRF24W.X for the PICDEM.net 2 with Wireless MAC/PHY setup
Lab1-C30-EXP16-ENC28.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10Mbps module
Lab1-C30-EXP16-ENC624.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10/100Mbps module
Lab1-C30-EXP16-MRF24WB.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with WIFI module
Lab1-C32-EXP16-ENC28.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10Mbps module
Lab1-C32-EXP16-ENC624.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10/100Mbps module
Lab1-C32-EXP16-MRF24WB.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with WIFI module

� �*�
 � ��
� *� � ! *%
 + � *%
 + �� �*�
 � ��
� *� � ! *%
 + � *%
 + �� �*�
 � ��
� *� � ! *%
 + � *%
 + �� �*�
 � ��
� *� � ! *%
 + � *%
 + � ,,,,� - -� - -� - -� - - ,,,,- - -- - -- - -- - - ,,,,- - -- - -- - -- - - ����

�

Execute the batch script to copy TCPIP configuration just completed to all of the lab and lab solution pro-
ject folders for use later in the class.

� �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ��������������� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��������������� � ! ��� � ! ��� � ! ��� � ! ��������������. �� ���
 ���" � � #� � (/ �#0. �� ���
 ���" � � #� � (/ �#0. �� ���
 ���" � � #� � (/ �#0. �� ���
 ���" � � #� � (/ �#0 ,,,,1 �
 � �
����2+
 ��1 �
 � �
����2+
 ��1 �
 � �
����2+
 ��1 �
 � �
����2+
 ������

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode. �

��������	

 1-6

Confirm a new IP address from the Router appears on the LCD, something besides 169.254...
Clear the on-board EEPROM by:

1. Hold the right-most pushbutton down (S5 on PICDEM.net 2, S4 on Explorer 16)
2. Press and release the /MCLR button (S1 on PICDEM.net 2, S1 on Explorer 16)
3. Continue holding the right-most button until several LEDs blink once.
4. Release the right-most button

�

��

� �*�
 � ��
� *� � ! *%
 + � *� � �� #� � 3 2+ ��� �*�
 � ��
� *� � ! *%
 + � *� � �� #� � 3 2+ ��� �*�
 � ��
� *� � ! *%
 + � *� � �� #� � 3 2+ ��� �*�
 � ��
� *� � ! *%
 + � *� � �� #� � 3 2+ �� ����

Open a web browser and access the webpage upload function by entering
http://UNIQUE-NAME/mpfsupload into the address bar. Use the host name defined in Step 4.
Upload the MPFSImg2.bin bundle of web pages to the target system when prompted.
Click the link for Site Main Page. Navigate the demo website specifically in the upper right corner where you
should be able to confirm the switch, potentiometer and LED operations.

About Network Settings
The demo application stores network configuration settings in EEPROM, so settings stored in the project file are only
loaded when EEPROM data is not present. Procedure #11 is only required when new network settings are configured
for the project. THIS ONLY NEEDS TO BE COMPLETED AFTER PROGRAMMING IN LAB1.

��������	

1-7

Sample Web Page Display

Additional Features shown in this web page
This sample web page demonstrates many of the capabilities of the Microchip TCP/IP Stack. If you finish early, you
can try out the various features. The LEDs on the board can be controlled via the status box at the upper right. (If
you’ve selected the Explorer 16, the left-most LED shares a pin with a pushbutton, and so it will not display correctly
and be uncontrollable.) The board reports back the status of its pushbuttons and potentiometer after they are changed
on the target system.

Helpful Suggestions for unfound hostname
In some PC configurations, Firewall settings can block browsers from properly connected via the hostname specifica-
tion used in Step 12 and follow-on labs. If this is experienced, it is recommended to disable the PC firewall software
for completion of the lab exercises.
Also, multiple unsuccessful attempts to access the development boards by hostname can cause an unusable browser
cache configuration. It is helpful to try one of the following two procedures prior to repeating the rebuild/reprogram
sequence:
- Execute nbtstat –R in a DOS CMD window to purge the browser cache OR - Use the new IP
address that was assigned by the router in-lieu of the hostname in steps above

��������	

 1-8

 Conclusions
This lab has confirmed that your network setup and development board are operational. You have assigned a unique MAC
address to your board, as well as a host name that can be accessed independently of the board’s IP address. This host name
operates through the NetBIOS Name Service, which is limited to the local subnet (in this case, your and your next door
neighbor). Host name access outside of subnets is accomplished through DNS, which will be discussed later.
The IP address shown on the LCD screen has been automatically assigned by a DHCP server in a local router. DHCP is
standard for most networks, and has replaced the need to hard code a static IP address. Static IP addresses can be config-
ured when necessary.

TCPIPConfig.h

�

 Code Analysis
The TCP/IP Config Wizard utility was used to modify network software configuration settings via compiler macros
(#define) stored in TCPIPConfig.h. This utility changes the header file in your project via designer input
but also can be viewed and edited via a text editor. Open TCPIPConfig.h and find where the tool stored the updated
host name and MAC address. You’ll see many other settings as well, most of which can be configured by enabling ad-
vanced settings in the utility. Specific board configurations, as discussed earlier, are handled similarly in the Hardware-
Profile.h file.

 Results
You have just set up the TCPIP Demo App project on your development board and uploaded a sample set of web pages.
When complete, you should see a page similar to the screen shown on the previous page: SAMPLE WEB PAGE DIS-
PLAY.

��������	

1-9

 THIS PAGE INTENTIONALLY LEFT BLANK

����
���	

 i-1

Lab Exercise 2
Using Wireshark for Protocol Debugging

Purpose

To obtain a working knowledge of using the Wireshark
protocol sniffing software using the HTTP Get Message
implementation from Lab 1 of this class.

Web Page Directory: C:\Master\1538\Lab2*

Requirements

Software: Wireshark utility from 1538 Lab Build Installer v1.536
Environment: MPLAB® IDE 8.60 , X or later, 1538 Masters Install Script 1.536
C Compiler: MPLAB C18 v3..38 or later, C30 v3.30 or later, or C32 v1.12 or later
H/W Tools: PIC18F: PICDEM.net™ 2, OR
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10 Mbps, 10/100 Mbps PICtail Plus or MRF24WB0 OR
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10 Mbps, 10/100 Mbps PICtail Plus or MRF24WB0
 AND MPLAB REAL ICE™ In-Circuit Emulator, or MPLAB ICD 3
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\Lab2...

Objectives

• Utilize Wireshark to test and debug communication traffic between Host and Client.
• Understand some TCPIP parameters such as: BOOTP, Payload content analysis, et. al.

����
���	

6-2

Procedures

Confirm Lab 1 was complete, including executing the . �� ���
 ���" � � #� � (/ �#0. �� ���
 ���" � � #� � (/ �#0. �� ���
 ���" � � #� � (/ �#0. �� ���
 ���" � � #� � (/ �#0 ,,,,1 �
 � �
����2+
 ��1 �
 � �
����2+
 ��1 �
 � �
����2+
 ��1 �
 � �
����2+
 �� confirmi
�����

� � % & ' �������� � % & ' �������� � % & ' �������� � % & ' �������������������(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �����
����
Lab2-C18-PICDN2-ETH97.Xfor the PICDEM.net 2 with internal MAC/PHY setup
Lab2-C18-PICDN2-MRF24WB.X for the PICDEM.net 2 with Wireless MAC/PHY setup
Lab2-C30-EXP16-ENC28.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10Mbps module
Lab2-C30-EXP16-ENC624.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10/100Mbps module
Lab2-C30-EXP16-MRF24WB.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with WIFI module
Lab2-C32-EXP16-ENC28.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10Mbps module
Lab2-C32-EXP16-ENC624.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10/100Mbps module
Lab2-C32-EXP16-MRF24WB.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with WIFI module

�

C
Ing your unique hardware. If you have a previous MPLAB IDE project open, you must first close it by selecting
from the menu: ������������������������������������� �� � ��	 �
� � �
 � �� �� � ��	 �
� � �
 � �� �� � ��	 �
� � �
 � �� �� � ��	 �
� � �
 � �����

�

	

Bundle and upload the completed page to the development board with MPFS utility.
The MPFS2 Utility generates the file HTTPPrint.h. This must be completed prior to compiling your MPLAB
IDE project to include the dynamic variable callback functions already included in customHTTPapp.c.
� �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ��������������� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��������������� � ! �� � ! �� � ! �� � ! �������������� � �� 3� � �� 3� � �� 3� � �� 3 ����
Confirm your 1538\Lab2\WebPages 2 folder and unique hostname is listed as the Device Address within the Up-
load Settings section. Click Generate and Upload to program your new pages to the development board. Con-
firm the utility successful completed.

Open Wireshark. Newer versions have a start up screen, and offer quick Network card selection and start of cap-
ture. Otherwise use the following to select the card and start a capture, as indicated in the next two screen shots:
1) Select CAPTURE/OPTIONS
2) Then select your PCs Ethernet card, Promiscuous mode, and Start a capture

�
�

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode. �

����
���	

 i-3

Select your PC’s
network card in the
Interface drop down
box.

Ensure that Cap-
ture packets in
promiscuous mode
is checked.

Click Start button to
start capturing pack-
ets…

�

“Packet List” Pane

“Packet Details” Pane

“Packet Bytes” Pane

STOP the capture after you see packets being captured in Wireshark. The figure below shows
Wireshark with its three main panes: Packet List, Packet Details, and Packet Bytes. The Stop icon is
shown below.

����
���	

6-4

Change the filter again to only show your board’s IP address.
Type it into the filter bar or use the Expression Builder.
a. To filter for all traffic with an IP address or destination source and destination use
the following filter, ip.addr == <IP Address> with your board’s IP address
b. If you find too many results, filter on HTTP as well : Example: ip.addr == <IP Address> && http
Notice the capture window is reduced to frames only associated with that IP address.

�
�

Use the Ethernet Discoverer executable from Microchip tools to confirm your dev tool’s IP address.
� �

��� �

��� �

��� �

���������������
� �

 � � ��
� �

 � � ��
� �

 � � ��
� �

 � � ��������������
� �

 � � ��
� �

 � � ��
� �

 � � ��
� �

 � � �������������� ��
� � � �� �� ��
� � � �� �� ��
� � � �� �� ��
� � � �� �������������� � ! ��� � ! ��� � ! ��� � ! ��������������� ��
� � � �� �4 �� �
� ���5 �� � � 6 �
�
� ��
� � � �� �4 �� �
� ���5 �� � � 6 �
�
� ��
� � � �� �4 �� �
� ���5 �� � � 6 �
�
� ��
� � � �� �4 �� �
� ���5 �� � � 6 �
�

�
 Enter a filter to look for DHCP protocols. Either use the expression builder or type directly into the filter bar.
Bootp is a protocol keyword for DHCP.
RESTART the capture again via the Start ICON shown below, disregard the request for saving.
PRESS the Master Reset button on the board. STOP the capture and investigate the bootp packets.

Wireshark Filter Bar

Network Discoverer

Start New Capture

�

����
���	

 i-5

 RESTART the capture. Open a web browser and point to http://UNIQUE-NAME/ specified in Lab 1. Stay on the
STATUS page which is default when receiving the index.htm page. STOP the Wireshark capture sequence.
Observe the frames monitored by Wireshark. Note the TCP socket connection frames.

View the capture in Wireshark utility to follow a TCP Stream for Payload and Socket processing.
Use the ‘Find Packet…’ command to display only the packets associated with the TCP transaction for

the index.htm page loading. Select this from the menu > Edit > Find Packet, or Ctrl-F.
Notice the packet where the first instance of the string is found is highlighted, shown on the screen at

the top of the next page.

Helpful Suggestions for Wireshark Packet Finding
When a browser sends a request for a file from an HTTP server, it sends out the request in ASCII text. Therefore, the
Find dialog box should use the ‘String’ search filter. Also, start with the packet finder searching in the PACKET LIST, as
shown in the display below.

��

��

����
���	

6-6

Now use the ‘Find Packet…’ command to display only the packets associated with the TCP transac-
tion for the lights.htm page loading. Select this from the menu > Edit > Find Packet, or Ctrl-F.

RESTART the capture.
Select the lights webpage heading in the browser at the top of the screen.
STOP the Wireshark capture sequence. Observe the frames monitored by Wireshark.

�	

��

����
���	

 i-7

Once the desired packet is found, you can right click on that packet in the packet list pane to get a context menu. Use the
‘Follow TCP Stream’ option. Close the screen shown below that opens automatically. Notice the filter contents change to
only the requested details.

��

����
���	

6-8

��
 Bonus Procedure
Figure out how to display only the packets associated with the TCP associated with downloading the mchp.gif
file inside this design. Use the ‘Find’ command by selecting:
> Edit > Find Packets…

�

 After finding the packet, ALTER THE TIME COLUMN PARAMETERS to suit your need for the timing calcu-
lation. Then USE FOLLOW THE TCP STREAM FEATURE. Application transmit performance can be
calculated by: (mchp.gif file size)/(time elapsed for entire TCP transaction).

Results
The Wireshark utility has been used to monitor the communication from a PC browser to the MCU acting as a webpage
server. Specific IP addresses were filtered for, and a TCP communication stream was observed.

 Analysis

Wireshark can be used to investigate the communication traffic by inserting a PC into the network. The utility can be used
to see all traffic, or can be configured to filter traffic for a defined subset of the communication partners. Filters can also be
used to track specific protocols and therefore help the designer confirm their firmware is behaving as expected.

Wireshark Menu Altering
The Time column in Wireshark can be configured to display several different values (time since beginning of capture,
time since last packet, etc.). Remember that right clicking on a packet in the packet pane will bring up a useful menu.

����
���	

 i-9

Bonus Code Analysis
Wireshark can be used for performance analysis by using the time column for calculations. Application transmit per-
formance can be calculated by: (application subset file size)*(time elapsed for entire TCP transaction)/total applica-
tion file size.

��������	

3-1

Lab Exercise 3
Integrating an Application with the Stack

Purpose
��
��
 � � �� �� �� � � 7�� � � �� ����+ ���� ���

 ��� � �
 � ��8 �� ��� � �
 � � ���
 ��� � �� ��� ��� ��� �
 � � 2����
�� �� �� �� �� � � 7������ �� ������� � �
,
�
 � ���� �� � � �
� �
 � � ��� ���� � �
 � �� �
 ��� �� �� � �� ���� ��� �
 � � �
 � � �� � �
���� �� �
 � ��� � �
�
 � � ���
 ��� � 9� �� � � �2�

#� ��� �� ��
 + 7�� � � �� �����
 � ���� ���8
 � � ���6 �� � �� � ��
 � � �� ��
 � � ���
 ��� � �� �� � � � �

 ��� ��

���
�
 � � ��� ���

 ������� ��� ��� ��
� �
 � � 2��5 � ���� ��� ��� � � � ��8 ��� �� ���� ��� �
 � � 7������ �� �� �

 ��� ��
 � ��
��� ��� ���

 ���� � �
�
 � � ���
 ��� � ��� �� ��� ��� �
 � � �

 �� �
�
��
 � ��� ��� �� �
��
 � �

� � � � 2��" � �� ��
 + �� �����
 �� �� � � ���
� � � � ��� � � ��� ��� � 7�
 � � �� � � � �� � � � ����� � ��� ��6 �� � �� � ��
 ,
� � �� ��
 � � ��� ��� �
 � � �� ����+ ��� � �

 ��� � �� ��

 ���� �� ��� �� ��� ��� �6 �� �2��" � ���� ��� � �� � ��
 + � �� ������ � � � �� � ��� �� �� �
� �� � �
� � � � �

 ��6 ��� 2�

Procedures

� �*�
 � ��
� *� � ! *%
 + *-� �*�
 � ��
� *� � ! *%
 + *-� �*�
 � ��
� *� � ! *%
 + *-� �*�
 � ��
� *� � ! *%
 + *- ����

Requirements

Software: Completed Lab 1 to support network settings
Environment: MPLAB® IDE 8.60, X, or later, 1538 Masters Installer 1.536
C Compiler: MPLAB C18 v3.38 or later, C30 v3.30 or later, or C32 v1.12 or later
H/W Tools: PIC18F: PICDEM.netTM 2, or
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0 or
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0
 AND MPLAB Real ICE™ , or MPLAB ICD 3
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\Lab3...

Objectives

• Experience the procedural steps for combing an existing firmware application with the TCP/IP stack
• Practice identifying the desirable locations for the firmware application within the TCPIP stack.

 C:\Masters\1538\Vending Machine\VendingMachine.*

The Vending Machine application is implemented in the Vending Machine Project Direc-
tory above. The core of the application is implemented in two source files.

��������	

3-2

Copy files VendingMachine.c and VendingMachine.h from the Vending Machine directory to the
Lab 3 project directory. Use Windows Explorer or My Computer.

Add the two files you copied to your MPLAB project. You may need to select “All Source And Header Files”
from the dropdown list for “Files of type” in order to see both the .c and .h file. Project ���� Add Files ����
VendingMachine.c and VendingMachine.h.

	

�

�

VendingMachine.h

�

MainDemo.c

�

Open VendingMachine.h and Comment out the section “Required Headers”. Also Insert #include “TCPIP
Stack/TCPIP.h” just below as shown. These headers and insertion integrate this file with TCPIP stack files.
Save the changes you make. �������������������������������������
 6 ��
 6 ��
 6 ��
 6 �

Open MainDemo.c and Insert #Include VendingMachine.h in so as to gain access to the vending machine
application data. Place this directly below the directive for MainDemo.h. line.

�

�

� � % & ' �������� � % & ' �������� � % & ' �������� � % & ' �������������������(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �����
Lab3-C18-PICDN2-ETH97 for the PICDEM.net 2 with internal MAC/PHY setup
Lab3-C18-PICDN2-MRF24WB for the PICDEM.net 2 with Wireless MAC/PHY setup
Lab3-C30-EXP16-ENC28 for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10Mbps module
Lab3-C30-EXP16-ENC624 for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10/100Mbps module
Lab3-C30-EXP16-MRF24WB for the Explorer 16 with PIC24F/dsPIC33F PIMs with WIFI module
Lab3-C32-EXP16-ENC28 for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10Mbps module
Lab3-C32-EXP16-ENC624 for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10/100Mbps module
Lab3-C32-EXP16-MRF24WB for the Explorer 16 with PIC32MX3xx/4xx PIMs with WIFI module

��������	

3-3

Insert a call to the vending machine’s initialization function InitializeVend() in main(). This should be
placed immediately following the call to InitAppConfig() on line 262.

MainDemo.c

Replace the contents of ProcessIO() from line 644. Instead of performing an A/D conversion, call Vend-
ingMachine() to perform any necessary vending machine tasks. �

MainDemo.c

�

The Application Global Variables within Vending Machine.c declare the storage locations
and define the state machine used by for the vending machine application. The LCD Func-
tions section writes the various menus to the LCD display. Finally, the Initialization section
configures the product names, prices, and stocks when the device boots.

VendingMachine.c-Global Variables

��������	

3-4

VendingMachine.c: Initialization

VendingMachine.c: LCD writes

��������	

3-5

MainDemo.c

��

In some versions of the stack, annoying messages are received on line 2 of the LCD display. If that occurs:
Comment out the call to PingDemo() in the main program loop to disable this output.
The “Ping timed out” message is generated by the ping demo when the right-most button is pressed.
Comment out the call to DisplayIPValue()as it writes the IP address to the LCD .
These deletions will eliminate the output of extraneous data to the LCD.

��

��

�

Verify that the vending machine operates as discussed in the initial demo. Unexpected output on the LCD
display will be corrected in the next step.
Verify that the web pages accessed during Lab 2 are still available.

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode. �

��������	

3-6

 Conclusions
Although no new functionality has been gained, the vending machine is now much closer to being network-
enabled. Integration with the stack is the most challenging task because it requires (in many cases) a new way of
thinking about the application. A few integration issues still remain, which will be explored in the next lab.

Code Analysis
The vending machine application was implemented as a state machine, which is common for many simple micro-
controller-based systems. Since each state executes for only a brief period, it was relatively easy to integrate into
the stack. However, the general model and code placement applies for more complex applications as well.
In general, initialization code should be called after the InitAppConfig() call. This code will be executed once
when your device boots. Application code should be placed either at the end of the main stack loop or in the
ProcessIO() function.

Results
Your project now has a vending machine operating simultaneously with the TCP/IP Stack. While the two func-
tions do not interact with each other yet, the basic functionality is working

Confirm the Router assigns an new IP Address.
Verify that the undesired messages no longer appear on the LCD screen.

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode. ��

�	

��������	

4-1

Lab Exercise 4
Remove Blocking Code

Purpose
Networked applications must handle a significant amount of background processing in order to keep the network connection
alive. To accomplish these time-sensitive events, the Microchip TCP/IP Stack operates in a co-operative multi-ta sking
fashion. This eliminates the need for an RTOS, as well as the need for interrupts and overhead.
 However, it means that your application must be implemented without any code that may block the processor. In this lab,
you will witness how a blocking loop can affect the TCP/IP Stack, and will learn how to take steps to avoid such loops in
your application.

Procedures
� � � ��
� ��� ���� � �

 ��� � �� ���� ��+ ��� � �� � �% 4 5 �� �
��� ��� �� �
�� ��� � �+ ��� � �2�
With your application from Lab 3 running, notice the blinking status LED on your development board. What hap-
pens to that light when a message change is displayed on the LCD? (The effect is most visible when you attempt
to insert more than $5.00 of credit into the machine.) Stable blinking operation of this LED signifies that the TCP/
IP Stack is being called frequently. When the status light is not blinking, the stack is not running and cannot re-
spond to incoming network traffic. The existing vending machine code uses a blocking loop to time the display
message. This needs to be corrected.

�

4-1 � �*�
 � ��
� *� � ! *%
 + : *-� �*�
 � ��
� *� � ! *%
 + : *-� �*�
 � ��
� *� � ! *%
 + : *-� �*�
 � ��
� *� � ! *%
 + : *- ����

Requirements

Environment: MPLAB® IDE 8.60, X, or later, 1538 Masters Installer 1.536
C Compiler: MPLAB C18 v3.38 or later, C30 v3.30 or later, or C32 v1.12 or later
H/W Tools: PIC18F: PICDEM.netTM 2, or
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0 or
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0
 AND MPLAB Real ICE™ , or MPLAB ICD 3
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\Lab4..

Objectives

• Identify non-conforming application code that can disrupt the required operational flow of the TCP/IP stack
• Practice making application code modifications to ensure compatible coexistence of two code sets

��������	

4-2

Insert a comparison of TICK values to determine if enough time has elapsed. If the timeout has occurred, advance
the state machine. Otherwise, just break and return to the main stack application. The stack will call the vending
machine to perform the comparison again later. Use the example shown below.

�

About Timing Loops
A common method for implementing delays is to cause the processor to complete some
meaningless task, such as counting to 10,000, or to call one of the Delay() functions that
does this internally. However, code constructs such as these block the processor and
waste MCU resources that could otherwise be spent handling incoming Ethernet packets or
other network functions. Loops of this type should be avoided.

Instead, use the provided Tick module. The Tick module is interrupt-driven, and is based
on the hardware clock. It is stable and accurate, and can be used to implement non-
blocking delays by comparing current times to timeouts. Since it is hardware-based, it is
also suitable for use as a Real Time Clock.

VendingMachine.c

	

Open the vending machine source file VendingMachine.c. Locate the blocking FOR loop in the
SM_DISPLAY_WAIT state inside of VendingMachine(). This loop consumes processing cycles by
performing a meaningless task. Mark this loop as commented out as shown in the example below.

	

�

� � % & ' �������� � % & ' �������� � % & ' �������� � % & ' �������������������(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �����
����
Lab4-C18-PICDN2-ETH97.X for the PICDEM.net 2 with internal MAC/PHY setup
Lab4-C18-PICDN2-MRF24WB.X for the PICDEM.net 2 with Wireless MAC/PHY setup
Lab4-C30-EXP16-ENC28.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10Mbps module
Lab4-C30-EXP16-ENC624.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10/100Mbps module
Lab4-C30-EXP16-MRF24WB.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with WIFI module
Lab4-C32-EXP16-ENC28.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10Mbps module
Lab4-C32-EXP16-ENC624.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10/100Mbps module
Lab4-C32-EXP16-MRF24WB.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with WIFI module

�

��������	

4-3

VendingMachine.c

�

�

 VendingMachine.c

�

4-3

�

�

Change the declaration of this value at the top of VendingMachine() to its initialization to indicate two sec-
onds rather than just the number 2. Use the macro TICK_SECOND to calculate this value. Your code should
match the sample below.

Change the two instances where displayTimeout is set. Use a relative time
based on TickGet() and TICK_SECOND as indicated below. The variable displayTimeout is now allo-
cated as a TICK and configured to expire on a relative timeout value. The last step in this conversion is to replace
the code the assigns absolute delays to displayTimeout with an assignment relative to the current TICK value.

��������	

4-4

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode.

�

Verify that the vending machine still functions.

1. Ensure that your web pages from Lab 2 are still accessible via a browser.

2. Verify that the status LED continues to blink, even when a status message is displayed on
the screen.

i. Test when vending is attempted with insufficient credit.

ii. Test when a coin is returned for depositing over $5.00.

iii. Test when a product is vended.

iv. Test when a product is sold out.

To use the tick module, replace the blocking call by checking the current time using TickGet. Then
add an additional state to wait for the timeout. Transition to this state and return to the main loop.
When the loop returns to your application, compare the stored value with the current time. You can

use simple subtraction, since Ticks are stored as signed integers and will automatically overflow. The
TICK_SECOND macro is based on the instruction frequency, and can be used for comparisons against
elapsed time. You can also multiply or divide this value to obtain various resolutions. Tick is an unsigned
value. Type-casting to LONG forces the result to be a signed value, which will automatically take care of
overflow. Assume a TICK is only one byte. Say TickGet is equal to 253, and TICK_SECOND/10 is actu-
ally 10. That means that “doneAt” will be set to 7 after overflow. When TickGet returns 255, you’ll have
255 – 7. That’s 248, or 1111 1000b. Cast that to a LONG and the first becomes a sign bit. That binary
value equates to -8, and so -8 < 0 and your timeout has not yet happened. When TickGet rolls over and re-
turns 3, you’ll have 3 – 7. You’ll get -4 after the cast, and your timeout will fail. Once TickGet has incre-
mented 10 times you’ll be at 8. You’ll have 8 – 7, which will be greater than zero and your timeout will
succeed. This works in many other cases, but you may have to pull out some old binary arithmetic rules to
prove it to yourself.

��������	

4-5

Code Analysis
The examples provided in this lab implement a timer without blocking loops. A single state is used for
the timeout stage, and the various machine states can set when a timeout will occur. Timeouts are
stored in displayTimeout, which is declared as a TICK value. The timeout value is calculated as
the current time (obtained via TickGet()), plus some multiple of TICK_SECOND. This method is suit-
able for measuring time differences from a few microseconds to a few hours. (It’s companion methods
TickGetDiv256() and TickGetDiv64K() are valid for a few weeks or several years, respec-
tively.) " � ��6
 �� ��� ��TICK_SECOND��� ��
 �� � �
 ��� ��
� � ��� ��6
 �� ��� ��GetInstructionClock()�
 � �

� � �� ����� ��� �HardwareProfile.h2�TICK values are stored as 32-bit unsigned integers. When a time
increment is added (such as 2*TICK_SECOND), this could result in overflow. Similarly underflow may
result when the subtraction is performed. The subtraction of TICK values, when cast to a LONG, com-
pensates for this by reestablishing the sign bit. This allows for valid comparisons in all cases.���

Results
When the lab is completed correctly, the status LED will continue to blink without interruption while mes-
sages are being displayed on the LCD. This signifies that application is not blocking the processor and that
the stack can complete its tasks in a timely fashion.

Conclusion
The vending machine is now completely integrated, and neither task will interfere with the other. With this com-
plete, you are now ready to being adding network features to the device.
The principles learned in these past two labs apply to all stack applications:

1. Break long tasks into states, allowing the stack to execute frequently.
2. Use the Tick module instead of blocking loops for timed events.

The co-operative multi-tasking methodology of the stack is flexible, and will consume as little or
as much processor time as the application supplies. If necessary, stack operation can be inter-
rupted by the application for a few hundred milliseconds up to even a few seconds. While this
is not desirable (and should not be a frequent occurrence), most network application protocols
will not time out until several seconds have elapsed without communication. However, the ap-
plication will risk overrunning its RX buffer and losing data during this time. As a general rule,
applications should attempt to run the main stack loop at least every 10 or 20ms, with 1-2ms
being the target for best performance.

�

Bonus Procedure
Several calls to DelayMs() remain in the code to help de-bounce the pushbuttons. Since the stack loop now
executes between each state, see if any of these can be removed without affecting operation. This will be de-
pendent on your platform, as the faster processors may still loop too quickly to avoid the transient periods.

��������	

5-1

Lab Exercise 5
Web-based Monitoring with Dynamic Variables

Purpose
The first network feature to be implemented for this vending machine is the ability to determine its stock remotely. Having
already decided upon a web page for monitoring, the next step is to link the vending machine data into a web page.
Example web pages have already been provided for this project. However, they are just static pages with no mechanism to
populate vending machine data into the page. In this lab, you will program the first page to display the product name and
remaining stock level as reported by the vending machine.

Procedures
Confirm design files in the WebPages2 folder in Lab 5 match the Sample Web Pages in
C:\Masters\1538 folder
.

Open index.htm from the WebPages2 directory in Crimson Editor.
� �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ���������������
�� � � � �4 � ���
���
�� � � � �4 � ���
���
�� � � � �4 � ���
���
�� � � � �4 � ���
���������������
�� � � � �4 � ���
�
�� � � � �4 � ���
�
�� � � � �4 � ���
�
�� � � � �4 � ���
����

�

Web Page Directory:
 C:\Masters\1538\Lab5\WebPages2

	

5-1

Requirements

Environment: MPLAB® IDE 8.60 , X, or later, MPFS Utility, 1538 Masters Installer 1.536
C Compiler: MPLAB C18 v3.38 or later, C30 v3.30 or later, or C32 v1.12 or later
H/W Tools: PIC18F: PICDEM.netTM 2, or
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0 or
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0
 AND MPLAB Real ICE™ , MPLAB ICD3 or MPLAB ICD 2
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\Lab5....

Objectives

• Implement dynamic replacement of static variables within HTML files for web server applications
• Utilize Callback procedure methodology between the HTTP2 module and customer application firmware

��������	

5-2

Replace HOSTNAME static text with a dynamic variable called ~hostname~.
Replace Machine Location / Description text to ~machineDesc~.
Save your changes to the HTML code.

�

index.htm

�

�

How Web Pages are Bundled
Recall: The MPFS2 utility must be executed prior to compiling your project in MPLAB.

Bundle and upload this modified page to the development board with MPFS utility.
Recall that the MPFS2 Utility generates HTTPPrint.h, which must be compiled into your MPLAB pro-
ject prior to compiling with your dynamic variable callback functions in step 5 herein.
� �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ��������������� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��� ��
� � � �� ��������������� � ! ���� � ! ���� � ! ���� � ! ���������������� � �� 3� � �� 3� � �� 3� � �� 3 ����
No modifications to the utility configuration should be necessary. Click Generate and Upload to program
your new pages to the development board.

��������	

5-3

CustomHTTPApp.c (delete unused sections)
Continue deleting thru the lines on the next page

Remove all the HTTPPrint_* functions within the “Dynamic Variable Callback Functions”
section (These callbacks are for the demo application, most of which are no longer needed.)
except for HTTPPrint_version() and HTTPPrint_builddate().

�

� �*�
 � ��
� *� � ! *%
 + � *-� �*�
 � ��
� *� � ! *%
 + � *-� �*�
 � ��
� *� � ! *%
 + � *-� �*�
 � ��
� *� � ! *%
 + � *- ����

� � % & ' �������� � % & ' �������� � % & ' �������� � % & ' �������������������(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �����
����
Lab5-C18-PICDN2-ETH97.X for the PICDEM.net 2 with internal MAC/PHY setup
Lab5-C18-PICDN2-MRF24WB.X for the PICDEM.net 2 with Wireless MAC/PHY setup
Lab5-C30-EXP16-ENC28.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10Mbps module
Lab5-C30-EXP16-ENC624.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10/100Mbps module
Lab5-C30-EXP16-MRF24WB.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with WIFI module
Lab5-C32-EXP16-ENC28.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10Mbps module
Lab5-C32-EXP16-ENC624.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10/100Mbps module
Lab5-C32-EXP16-MRF24WB.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with WIFI module

Open CustomHTTPApp.c within MPLAB’s project window.

��������	

5-4

CustomHTTPApp.c (delete unused sections)

�

Insert a callback function named HTTPPrint_hostname() to this section of the file.
This function has no parameters and returns no value. Within the function, use
TCPPutString() to print the hostname from its RAM location, AppCon-
fig.NetBIOSName, to the TCP socket, sktHTTP. For more information about call-
backs, refer to the info box labeled on the topic below..

CustomHTTPApp.c

�

��������	

5-5

CustomHTTPApp.c

�

�

Add a second callback function named HTTPPrint_machineDesc() to this section of the file. This function
also has no parameters and returns no value. Adding this function is slightly more involved.

StepA, Insert a #include VendingMachine.h entry at the top of the file right after the existing #include Main-
Demo.h entry. This provides a reference to the machineDesc string.

StepB, Insert an if loop that uses TCPIsPutReady() to confirm buffer space. The machineDesc
string may be up to 32 bytes long, which is longer than the 16 bytes the HTTP2 web server guarantees are avail-
able. So, the HTTPPrint call must follow the ensuring of at least 32 bytes are free in the TCP buffer. If the buffer
is too small, set a non-zero flag in curHTTP.callbackPos and return, which will request to be called again
when more space is available.

About Callback Functions
Callback functions are a concept of event-driven programming. For the HTTP2 web
server, an event occurs when a dynamic variable is encountered in your HTML code. The
response, handled by your callback function, is to print text or data to the web browser.

You do not need to worry about how or when the callback is invoked. The HTTP2 server,
along with the HTTPPrint.h file generated by the MPFS2 Utility, take care of this for you.

�

�

�

��������	

5-6

Sample Web Page

��

Confirm the Router assigns an new IP Address
Verify that the vending machine still operates as discussed in the initial demo.
Verify that the web pages have the dynamic variables have replaced the static values, specifically hostname and
location. The string for the location is set in VendingMachine.c, and can be modified there if desired.

��

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode.

��������	

5-7

Execute MPFS2 Utility similar to step 4 and click Generate and Upload to program your new web pages.
. (IF USING THE SOLUTION WORKSPACE, skip to Step 16 to continue) ��

Return to index.htm in Crimson Editor.
Replace each instance of the static string “Product” with a dynamic variable with a single parameter. Call this
variable ~name(i)~, where i represents an index from 0 to 6. This adds dynamic variables for each of the
product names.

�	

Replace each static instance of stock quantities with a dynamic variable. Name this variable ~stock(i)~,
again with indices from 0 to 6. The stock is listed in two places for each bar. The first prints as text inside the
bar, while the second controls the display width of the bar. Be sure to replace both locations, but leave the em
designation. (The em is a standard print measurement.)
Ensure you replace all 7 instances for the product and stock entries.
Save your changes to the HTM file.

��

Web Page Directory (Destination):
 C:\Masters\1538Lab5\WebPages2

Index.htm

�	

��

��������	

5-8

CustomHTTPApp.c

��

�

�

��

Access your board’s web page using a web browser.
Verify that the bar graph display is now populated with dynamic data from the board. Vend a few drinks and
click Refresh in your browser to verify that the stock numbers and bar lengths change.

Insert another callback function for HTTPPrint_stock(). This function also accepts a single WORD pa-
rameter. Use the uitoa(WORD, BYTE*) function to convert the stock element from a binary value to a
string, then write the output to the socket.

��

Insert another callback function HTTPPrint_name()into CustomHTTPApp.c. to display the name of the
requested product. This function accepts a single WORD parameter.
Product data is stored in the Products array. Use the parameter as an index to this array, and print out the
associated name element using TCPPutString, as shown below.

��

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode.

��������	

5-9

 Conclusions
In this lab, web-based monitoring was been added to the vending machine. Several examples of dynamic variables
were implemented, demonstrating a wide range of capabilities for this flexible feature. With just a few lines of
code, the vending machine can now output its current status in a clean bar graph display.

Code Analysis In the HTML file, two types of dynamic callbacks were in-
serted. In the first portion of the lab, standard text outputs were added. These callbacks

receive no parameters, and only needed to call TCPPutString() to write text into the web
page.

One of these callbacks (for the machine description string) may need to output more than 16 bytes. To prevent
potential buffer overruns, this callback had to manage its output state. Since the output was still relatively short,
the function just checks if enough space is available. If not, it returns after setting a flag in
curHTTP.callbackPos, which indicates to the server that this callback must be invoked again to complete its
output. This is an acceptable solution for strings less than about 50 bytes. For longer outputs, write as many bytes
as possible and use the callbackPos variable to track to position of the output, as discussed in the lecture
slides. Once complete, restore the callbackPos variable to zero to indicate that the callback is finished.
Dynamic variables for the names and stock levels of each product were also added. These variables had parame-
ters passed to the functions. All parameters are passed as WORD values, which the callback function uses as an
index to the Products array. The outputs of these functions were used for both printing text and controlling dis-
play elements, such as the length of the bars in the graph display.

Sample Completed Web Page

Results A completed implementation will look similar to the following when
viewed in a web browser. As products are purchased from the machine, a refresh

of the browser page will indicate the new stock levels. An automatically updating dis-
play, while technically feasible, is outside the scope of this class.

��������	

5-10

 Bonus Procedure
Dynamic variables can also be used to control visual elements. Notice that one of the bottom two bars are red,
while the other bars are green. We’d like to control this color so that any products where stock is running low are
automatically highlighted in red.

Replace the text class attributes low and ok with a dynamic variable called ~status(i)~ within the index.htm
file via Crimson Editor.

Execute MPFS2 Utility to bundle your changes to the webpage and upload them to the development board. The
utility will also update your copy of HTTPPrint.h to link in your new dynamic variables.

Insert a callback for HTTPPrint_status() in CustomHTTPApp.c. This callback function should print the
string “low” if stock is less than 8, and “ok” otherwise.

��

��

	�

Verify after selective vending, the quantities and colors change appropriately. 		

BONUS index.htm

��

��

	�

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode.

����
���	

 i-11

Sample Web Page after Bonus Procedure

CustomHTTPApp.c

	�

��������	

6-1

Lab Exercise 6
Web-based Control via the GET Method

Purpose
Now that the vending machine can be monitored remotely, it would be nice to add some control features. As dis-

cussed, this can be accomplished through two different HTTP methods: GET and POST.
In this lab, you will learn how to use the GET method to pass short amounts of data to the device. In the process, an inter-
face for controlling the lights on the vending machine will be added. Since the current development platform only has
LEDs, one of these will be used for simulation. Control via the POST method will be discussed in a future class.

Procedures
Open lights.htm, from the folder listed above with the Crimson Editor.
This file contains the HTML form that will be used to CONTROL the LEDs.
� �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ���������������
�� � � � �4 � ���
���
�� � � � �4 � ���
���
�� � � � �4 � ���
���
�� � � � �4 � ���
���������������
�� � � � �4 � ���
�
�� � � � �4 � ���
�
�� � � � �4 � ���
�
�� � � � �4 � ���
����
����
����
Find the <form> tag, and notice that the method attribute is set to get. The form contains two input buttons,
both of which are named lights.
Find the radio button inputs. Notice that both are named lights. When the form is submitted, the value of the
lights parameter will be set equal to whichever radio button is selected.

�

Web Page Directory:
 C:\Masters\1538\Lab6\WebPages2

	

Requirements

Environment: MPLAB® IDE 8.60 , X, or later, MPFS Utility, Masters 1538 Installer 1.536
C Compiler: MPLAB C18 v3.38 or later, C30 v3.30 or later, or C32 v1.12 or later
H/W Tools: PIC18F: PICDEM.netTM 2, or
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0 or
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0
 AND MPLAB Real ICE™ , or MPLAB ICD 3
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\Lab6...

Objectives

• Study the procedural steps associated with adding HTML forms to a web page to implement control
• Practice with including the necessary Callback code within an application to issue HTML Get based control.

��������	

6-2

�

lights.htm

	

memcmppgm2ram() compares an array in RAM to an array in program memory. It
accepts the two pointers and a length parameter. If the two arrays match, it returns
zero, which is why the comparison is inverted.

Parameters returned from web forms are always represented as strings. If you re-
turn numeric values, they must be parsed from their string representations.

�

Update the first comparison to check for lights.htm. Remember to update the length parameter to 10 as well.
If the name matches, the application should now look for a parameter called “lights”. If the pointer returned
by the call to HTTPGetROMArg() is not NULL and matches ASCII ‘1’, the pin LED4_IO should be turned on.
Otherwise, the pin should be set to off.

� � % & ' �������� � % & ' �������� � % & ' �������� � % & ' �������������������(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �(� �� ���
�)�� �����
����
Lab6-C18-PICDN2-ETH97.X for the PICDEM.net 2 with internal MAC/PHY setup
Lab6-C18-PICDN2-MRF24WB.X for the PICDEM.net 2 with Wireless MAC/PHY setup
Lab6-C30-EXP16-ENC28.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10Mbps module
Lab6-C30-EXP16-ENC624.X for the Explorer 16 with PIC24F/dsPIC33F PIMs with 10/100Mbps module
Lab6-C30-EXP16-MRF24WB.Xfor the Explorer 16 with PIC24F/dsPIC33F PIMs with WIFI module
Lab6-C32-EXP16-ENC28.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10Mbps module
Lab6-C32-EXP16-ENC624.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with 10/100Mbps module
Lab6-C32-EXP16-MRF24WB.X for the Explorer 16 with PIC32MX3xx/4xx PIMs with WIFI module

Open CustomHTTPApp.c within MPLAB’s project window. Forms submitted via GET are processed in
HTTPExecuteGet(). Find this function.
Note: The first step in this function is to determine which file name is being accessed (and therefore which form
has been submitted). The call to MPFSGetFilename() handles this, and then a memcmp variant is used to
check the filename.

Execute MPFS2 Utility similar to Lab5 step 4 and click Generate and Upload to program your new web
pages. .
(IF USING THE SOLUTION WORKSPACE, skip to Step 8 to continue)

�

��������	

6-3

CustomHTTPApp.c

�

Results
A correct implementation will allow you to control the state of one LEDs using a web form.

Code Analysis
As mentioned earlier, data received via the GET method is stored in curHTTP.data. This data is located using
HTTPGetROMArg(), which returns a pointer to the value, or NULL when the requested parameter was not
found. This pointer is then compared against expected values to determine the appropriate action.

�

Insert the form processing functionality as shown on the following page. Remove any remaining code in
HTTPExecuteGet(), which will include the processors for cookies.htm and leds.cgi.
These forms were implemented in the demo application, but no longer exist in your project’s web pages. Ensure
that the function still returns HTTP_IO_DONE. This indicates to the HTTP2 server that the function is complete and
should not be called again.

�

�

Access your board’s web page and click on the link for Lights.
Verify that one of the LEDs on the board can be controlled using the web form.

�

�

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode. �

��������	

6-4

��

��

CustomHTTPApp.c

lights.htm

��

��

Insert the callback function HTTPPrint_light_chk()via MPLAB into the file CustomHTTPApp.c. This
function will accept a single WORD parameter.

Bonus Procedure
Most web forms pre-select the current value to provide a more intuitive interface to the user. This can be accom-
plished for your form using dynamic variables.

Open lights.htm in Crimson Editor again. You will add a dynamic variable here to pre-select the correct
radio button depending on whether the LED is on or off. A radio button will be selected if it has a checked at-
tribute.

Insert a dynamic variable in each radio button, which will allow your application to dynamically insert this attrib-
ute.
Save your changes to the HTML code

Since HTTPExecuteGet() handles all GET forms, the function must resolve the form that was submitted by
checking the file name. The MPFSGetFilename() function determines the name of the file being accessed by
the server and stores it back to the temporary string for comparison.

��

��

Execute MPFS2 Utility similar to step 3 and click Generate and Upload to program your new web pages.
. (IF USING THE SOLUTION WORKSPACE, skip to Step 15 to continue) �	

��������	

6-5

Pre-Selected Radio Button

Verify that the current state of the LED is now pre-selected on your form when the page loads. �

Bonus Procedure Results:
In this section, a dynamic variable was added to the radio buttons. This dynamic variable either prints “checked”
or nothing, depending on the state of the LED. By printing “checked”, the server can control the default state of

Inside this function, Insert a check if the parameter received matches the current state of LED4_IO. If it does, use
TCPPutROMString() to write the string “checked” to the page. ��

��

BUILD TO CONFIRM NO SYNTAX ERRORS

BUILD, PROGRAM AND RUN IN THE TARGET SYSTEM

SEE SECTION 1.8 IN APPENDIX A FOR CONFIGURING YOUR PROGRAMMER

SEE THE SECTION 2.1 OR 2.3 OF APPENDIX A FOR MPLABX BUILD AND/OR RUN OP-
TIONS. Build and Program the firmware into the selected device in RELEASE mode.

��������
�

7-1

Appendix A
MPLAB® X IDE Quick Reference Guide

���������	�
��
���

��� �
���
�����������

�������������	
������
	�� ����

���������������	�����
�����	����������
	�� ����

�������������	��	�
	�����	���
������
	�� ����

������������	� ��	������	����� ������
	�� ����

������������	�� �
	
�� ��	�	�	������	�� ����

��!�����������	������	�������
	�� ����

���������������	������
	��� ��"�

��"��������� ���� ����
	����	���
�������������	
�����
��	
�
�����
��� ��"�

���������
�����������
��� ����#$���������
	��� ��%�

��� ����#$�����
���$
������
	���� ��&����	#$��	�� ��%�

��� ����#$�����
���$
������
	���� ��&�$�����	#$��	�� ���'�

����������
�����������
��� �����	������&�
�	��&	��	#$��	��� �����

��� ������
������������ �	�	�$���
�� &	
��	#$���
��� �����

��� �����	���
����	���#�	�(���
�� �����

��� ����$�	��&	�)���� ���&��� �����

��� ���������� ��
��$�	�* ���&	�� �����

��� ������	� �+� #	��	��, 	� �� ����������� ���
���������� � �����������
�������	������������������������� �����

�

�

�

 page A-1

��������
�

7-2

Section 1.7

How to close a project
-&	�	���	��� ��� 	�&���� �$���
�$�	��������	������
	��.�

� ������
��

/��&������(��
��&	�����
��	�����&	����
	����
��&	����
	�����		�0�&	��&������
1�

�
���	�	���	��������� ��&	����$��� 	
$�0�#�$���2������&	�� � ����
1��

� ���������

3��� ��&	�� ��
�� 	
$4��	�	�������������	����������������������	
�� �

� &	�	���������	
�������&	�
�� 	�����&	����
	��� �$�� ��&��������	5�&	�	�� � �

#	�� $�����	���� ������ 	
$���	� ����� �$�&��	�� ��	��&�
��
	����
	�����	
��
�

�&	�67+�

Section 1.8

How to modify project settings
-&	�	���	��&�		�� � ��������	��������
	��8���	���
��.�

� ������
��

/��&������(��
��&	�����
��	�0�&������
1���������
	����
��&	����
	�����		��
��

�	�	�������!�����������&	��	� �#����� �����&	���
�����$��� 	
$�

� ���������

3��� ��&	�� ��
�� 	
$��	�	������������������������!����������������	
�� �

� ���������

6���&	���������"
#���
$ �
��� �
��� ������	
�0#����� ��	������
	��# ��	��$��14�

 �$���
�����(��
��&	�9� �	
�&��
��#���:����
��
������	���� ����
�

�����������!�������

3��� �&	�	� �$���
��	�	���������	�	
���	���	4��	#$����������#$����������
�� �$�

��
�� ���� ��
 �����&	����	���
�����* &	
��&����
����
	� �����4�����(��&	����� �

#$���
����� �(�����&�� �$���
��&	���		��
��&	��	������	�

�������
�%�
�

������ ����������� ��!����������� ��"

!���������

�������
�%���

���!������� �������	
���������������"

!������#����$ ����% ����% ��

��������
�

7-3

���������
�����������

Section 2.1

How to build a project

-&	�	���	��� ��� � ��������	����&	�	��� ��#$����� �	�.�

3��� ��&	�, ��
�-���#��.�

-&	�	���	��	�	����� � �����#$���������
	����
�, ;<�=�>��	�	
��
���
�� &��� �$�

�
�	
��������� ��&��&	��	�$������-&���� 	�&�������
� �$�	������		��&	��	�$���������

#$���������������$�	����	�	��	�� ��	�&	�����	���

�

-&	�	���	��� ������	�	
��� �	�����#$���� �$���
���.�

�������

-&���� ����#$�����
� ��&	����	���
� �$�����
	����&���&��	��&�
�	����
�	��&	������

#$����������� ����#$����	�	� �&�
�����
��&�
��&���#		
�#$������	���$�� �� �6��� ����

�	
	���� �#	�����	�����$�	��&���� �	����#$���4�	��	����� ���������	�����
	������

	���
��
���������

-&���� �����	� ��	��
 ��
�	�� 	����	����	���	
	���	��# ��&	���	���$��#$�����
��

� ���� #$���� 	�	� � ���	� �
� �$�� ���
	��� �	�����	��� ��� � &	�&	�� ���
��� ��� &���

�&�
�	����
�	��&	������#$�������	
�$�	����$��4���	�
�#$�����

������

	���
��
��������

���	�
����	� 4� �$���
����&������(��
��&	�����
��	���������
	���0�&������
1��
�

�&	����
	�����		��
���	�	���	��&	�����������	���
��
������������ ��&	����$��

� 	
$�

�

���
�,;<�=�67+�"�

�����������
�,;<�=�67+�"�

Section 2.2

How to build and run a project
with a debugger

* &	
� �$�� �
�����#$���������
	���������&	��$����	����������� � �
��������	��

����$
�� ��&����	#$��	����(��&	�,;<�=?�6@7������/+�<�6@+4��&�������&	�� 	�&���

���$�	��

-&	�	���	��&�		�� � �����#$�����
���$
� �$�����	��&��$�&����	#$��	�.�

�������
��

@���(��
��&	���������������#$���
��
��&	�� ��
�����#���

����������

�/��&������(��
��&	�����
��	�����&	����
	���0�&������
1��
��&	����
	�����		��
��

�	�	������������� ��&	����$��� 	
$��

����������

3��� ��&	�� ��
�� 	
$4��	�	�������������������������������������	
�� �

�

-&���� ������	����� ��&	������� �
�����(���$��� ������� .�

��� =$����0� �(1����
	����
��	#$��� ��	�

b. ;������ �����	��0$
�	���$��
����� $�����1
c. /$
����	��
�����	�

-&	� ������ �
�� 	���
� �
�� ������

�$
����
�� ��	�
��� �
�	
�	�� ����

$�	� #	���	� &�
� �������4� ������

�������� ��� ��'�� �
�� ������$ �

�������� � ���� �&�		� ��� �&��	� �$
��

���
�� �$��� ������� � ��� �� #$����

#	���	� ��	����� �
���$��&	����	�����

A �� &��� � � ���� #	� ��
	� # � $��
��

���������	���
��
�������������4�#$��

��� � ���� #	� �� �$��������
� ��� 	������

�
��� ����� ���	���� 	��

6�����
���
	�	���� ������������������

	���
� �
�� ������ #	���	� ���
�� ��

������ �������� #	��$�	� �� #$����

� ����#	���
	��$��� ������� ��

��������
�

7-4

Section 2.3

How to build and run a project
without a debugger

* &	
� �$�� �
�����#$���������
	���������&	��$����	����������� � �
��������	��

����$
�� ��&�$�����	#$��	�4��&�������&	�� 	�&������$�	��

-&	�	���	��&�		�� � �����#$�����
���$
� �$�����	��
�������	�.�

�������
��

@���(��
��&	�&�
���������#$���
��
��&	�� ��
�����#���

����������

�/��&������(��
��&	�����
��	�����&	����
	���0�&������
1��
��&	����
	�����		��
��

�	�	���&�
����� ��&	����$��� 	
$��

����������

3��� ��&	�� ��
�� 	
$4��	�	���&�
������&�
������������������	
�� �

�

-&���� ������	����� ��&	������� �
�����(���$��� ������� .�

��� =$����0� �(1����
	����
��	�	��	�� ��	�

b. ;������ �����	��
c. /$
����	��
�����	�

6�����
���
	�	���� ������������������

	���
� �
�� ������ #	���	� ���
�� ��

&�
� �������� #	��$�	� �� #$���� � ����

#	���
	��$��� ������� ��

��������
�

7-1

Additional Exercise
Creating a Simple Web
Purpose

Modern web pages are created using a combination of HTML and CSS code. HTML is a markup language, meaning that
the content is divided into a structure, with each element given a specific type. CSS is a style language which specifies how
to present the content found in the HTML structure. Together, these files are parsed by a web browser to create the on-
screen display.
In this lab, you will create a simple web page with your name, a brief paragraph about yourself, and a few visual elements.
You will test your page using the web browser on your PC.
Web pages for Microchip’ s embedded platforms are compiled into an Microchip File System (MPFS) image. This image is
similar to a zip file, and includes all of your web page code in a format that is easy for the PIC to serve. To finish the lab,
you will bundle and upload your web page to your development board using the MPFS2 Utility, which will allow other
attendees to view the page on their PC.
If you finish early, a bonus section will teach some basic CSS to help you format your page.

Procedures
Confirm all the files located in WebPages2 directory shown above are deleted These are shipped with the TCP/
IP Stack, but are not needed for this class. However the same folder location will be used for new pages.����

Web Page Directory: C:\Masters\1538\AddlLab\WebPages2

�

Requirements

Software: MPFS utility from Masters 1538 Installer v1.536, Crimson Editor
Environment: MPLAB® IDE 8.60 ,X, or later, Masters 1538 Installer 1.536
C Compiler: Not Required for this Lab
H/W Tools: PIC18F: PICDEM.netTM 2, or
 PIC24FFJ128GA010 PIM: Explorer 16 w/ 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0 or
 PIC32MX360 or PIC32MX460 PIM: Explorer 16 & 10Mbps, 10/100Mbps PICtailTM Plus or MRF24WB0
 AND MPLAB Real ICE™ , or MPLAB ICD 3
 AND DHCP Enabled Router (wired or wireless)
Lab Files: C:\Masters\1538\AddlLab\...

Objectives

• Practice HTML and CSS style sheet programming
• Utilize the MPFS utility to package web page information and transfer to dev tools via TCP/IP

��������
�

7-2

Launch the Crimson Editor to create a new file named index.htm and save it in the WebPages2 mentioned
previously. � �

���� �

���� �

���� �

����������������
� �

 � � ���
� �

 � � ���
� �

 � � ���
� �

 � � ���������������
�� � � � �4 � ���
���
�� � � � �4 � ���
���
�� � � � �4 � ���
���
�� � � � �4 � ���
���������������
�� � � � �4 � ���
�
�� � � � �4 � ���
�
�� � � � �4 � ���
�
�� � � � �4 � ���
����������������� ��� ��� ��� ��� ��� ��� ��� ��������������/ � � ���/ � � ���/ � � ���/ � � ���
� ��� ��� ��� ��� ��� ��� ��� ���������������
 6 � �& � ���
 6 � �& � ���
 6 � �& � ���
 6 � �& � ��������������index.htm in the folder C:\Masters\1538\AddlLab\Webpages2\

	

�

�

�

In HTML, a <title> tag in the <head> section displays in the browser’ s title bar, but not on the page itself.
The <h1> tag will display as big bold text in your page. <p> tags are displayed with a blank line of space
between them.

 The
 tag forces a line break without this extra line of space. The
 tag is a self-closing tag. It
does not enclose content, but merely indicates a visual display element. Other examples of self-closing tags
include image tags and form input fields <input … />.

Inside the <head> tag, insert a <title> tag enclosing your company name. Insert a <h1> tag inside the
<body> tag, enclosing your personal name. Be sure to include appropriate closing tags as well.

Sample HTML Page Structure
<html>
 <head>
 <title>My First Web Page</title>
 </head>
 <body>
 <h1>My First Web Page</h1>
 <p>Compared to assembly, HTML is really easy!</p>
 </body>
</html>

Below the <h1> tag, insert a <p> tag enclosing two brief sentences about yourself. This will appear as a
paragraph of text on your page.

Below the <p> tag, insert another <p> tag. List information from your business card such as your name, title,
address, and phone number. Insert a
 tag to add a line break after each element of data.

Insert the required <html>, <head>, and <body> structure tags as shown in the sample web page below. In-
clude the appropriate closing tags </html>, </head>, and </body> as well.

The default extension for HTML code in Crimson Editor is *.html. The default file
name for the HTTP2 server is index.htm. Make sure your extension only has
three letters!

��������
�

7-3

Insert a link to your company’ s website (or a site of your choosing) as the last line in the “ business card” informa-
tion. Use an <a> tag. Insert an href (hyper-text reference) parameter to the tag indicating the link’ s destination.
Enclose the text you wish to display (underlined in blue) in between the <a> and tags. It should look some-
thing like:
 www.microchip.com

Save the file, then view your completed web page by opening it in your web browser.
	 �� � � � � �5 � � � �� � ��	 �� � � � � �5 � � � �� � ��	 �� � � � � �5 � � � �� � ��	 �� � � � � �5 � � � �� � ��������������� � �� � � � � ��
��� � �� � � � � ��
��� � �� � � � � ��
��� � �� � � � � ��
��������������/
 6 ��
 �� ��� �/
 6 ��
 �� ��� �/
 6 ��
 �� ��� �/
 6 ��
 �� ��� �WebPages2��������������������5 � � + �� �� ��� � �5 � � + �� �� ��� � �5 � � + �� �� ��� � �5 � � + �� �� ��� � �index.htm����

�

This should be a fully qualified URL, including http://, because the link references an ex-
ternal server. For local links you would list only the relative path to the page, such as:

Next Page

�

As you view the web page in the step, you can return to steps 3 through 8 to make changes. After saving, use
the browser’ s Refresh button to see the modifications.

Sample Web Page

�

�

�

�

Your classroom may not have Internet access, so the link you added to your web page may not work properly.

Note the size of the file as it is saved from Crimson Editor, less than 500 bytes. It is important to avoid using
editors that generate large files that become difficult to fit in embedded memory arrays.

��������
�

7-4

How Web Pages are Bundled

��
 Confirm that Start With: Webpage Directory is selected and that the correct source directory shown above is
entered:

Source Directory:
 C:\Masters\1538\AddlLab\WebPages2\

��
 Confirm that Output: BIN Image is selected.

�	
 Confirm that the OUTPUT FILES project directory shown above is entered:

Project Directory:
 C:\Masters\1538\AddlLab\

��
 Confirm that Upload Image is selected. Then click the Settings button and make the following changes and con-
firmations:

• Click the Defaults button to restore the standard settings.
• Set the Device Address to the host name you chose in Lab 1.
• Click OK to save your changes.

Open the MPFS2 Utility, so on the next page of this manual.
� �

�������
� �

 � � ������ ��
� � � �� ������ � ! ������ � � � 3 �

In the next few steps, you will use the MPFS2 Utility to bundle your web page and upload it to your develop-
ment board. Before beginning, ensure that your development board is still running by confirming the new IP
address on the LCD, and confirm the index.htm is saved.

�

��������
�

7-5

MPFS2 Utility After Configuration

��
 Click the Generate and Upload button. The MPFS2 Utility
will package your web page and upload it to the development board.

��
 Verify that you can now access your new web page from your board using the same address as you used in Lab 1.
Ensure the ICD2 debugger is disconnected and Confirm the Router has assigned an IP Address.

�

 Access your neighbor’ s board using their host name in your browser’ s address bar. Confirm that they can
also access your web page from their browser.

The next step may cause the Windows Firewall to prompt you about allowing the MPFS
Generator to access the network. Be sure to click Unblock if this occurs.

��������
�

7-6

Bonus Procedure
Return to index.htm in Crimson Editor. Insert a link to the style sheet you will create within the <head>
section:

<link href="style.css" rel="stylesheet" type="text/css" />

Insert a class parameter to the opening <p> tag containing your business card information. (The closing tag
does not need modification.) The opening tag should now look like:

<p class="businesscard">

Save the newly modified index.htm,
� ��� ��� ��� ��� ��� ��� ��� ���������������
 6 � ��
 6 � ��
 6 � ��
 6 � �����
����
Create a new file named style.css and save it in the WebPages2 folder with your HTML page.
� ��� ��� ��� ��� ��� ��� ��� ��������������/ � � ���� ��� ��/ � � ���� ��� ��/ � � ���� ��� ��/ � � ���� ��� ���������������
 6 � �& � ���
 6 � �& � ���
 6 � �& � ���
 6 � �& � ��������������style.css

Insert style sections to the file as shown in the code analysis section on the following page. Save your changes,
then repeat steps 14 and 15 to verify that your changes are visible.

��

��

��

	�

	�

Colors are represented as hex RGB triplets, and you may modify them as you like. Sections matching the name
of a tag apply to all tags of that type. Sections with a period separator followed by another name apply only to
tags with a class matching the second name.

Results

Sample Web Page

��������
�

7-7

Final Web Page

Bonus Results

2-8

Code Analysis����

 index.htm

The HTML document follows the required structure with an <html> tag enclosing <head> and <body> tags. The
<title> tag is added to give the page a title in the browser’ s title bar (as well as in search engines, bookmarks, and
other locations).

��������
�

7-8

Within the body section, a header is inserted, followed by two paragraphs. The second paragraph uses the line break tag to
force new lines. Each tag (except for self-closing tags) has an associated closing tag terminating each section. The
<link> tag will only exist in your HTML if you completed the bonus section, as will the class attribute in the second
<p> tag. If you did finish this section, you will also have a style.css file that looks similar to the following:

style.css

 Conclusion
This lab has presented an extremely brief overview of HTML and CSS. These languages form the foundation for mod-
ern web page development. Before starting your own designs, you’ ll want to read about the other capabilities of
HTML, including <form> tags, , <div>, , and in-line formatting with and <i>.
HTML and CSS are well documented in recommendations posted by the World Wide Web Consortium at their web-
site, www.w3c.org. For those who prefer tutorials to dense technical specifications, a quick visit to your favorite search
engine will turn up hundreds of sites teaching the fundamentals of HTML design.
For the remainder of the class, you will only need to be able to read and understand the structure of a few HTML docu-
ments. The web pages used for this class will be provided, so you will not need to build them from scratch. This pur-
pose of this exercise is only to familiarize yourself with HTML and learn enough to read code later.

