made with doc-{o)-matic

e
-

Microchip Google
PowerMeter Reference
Implementation Help

Copyright © 2010 Microchip Technology, Inc. All rights reserved.

Microchip Google PowerMeter Reference

Table of Contents

Introduction

Additional Information

Getting Help

SW License Agreement

Running the Demos

Firmware Requirements
Development Tools
Configuration and Programming
Authentication

Operation

Using the Code

How the Application Works
How the Web Page Works

Creating a Custom Application

Application API

Functions

CustomHTTPApp
HTTPDeactivateDevice Function
HTTPPostAuthenticate Function
HTTPPostAuthinfo Function

ginsu
CalculatePubKeyHash Function
ConvertUtcSecToString Function
GetBuildNumber Function
GetCumulativePower Function
GetHashListEntry Function
Getlpv4 Function
GetMac Function
GetPreferencelnt32 Function

GetPreferenceStr Function

10

10
10

11

14

14
14
14
15
15
16
17
17
18
18
19
19
20
20
21

Microchip Google PowerMeter Reference

GetSQ Function
GetSQDetails Function
GetUptimeSec Function
GetUtcTimeSec Function
GetWebPort Function
GInitForWork Function
GPollForWork Function
GSendInit Function
GUpdateNVRam Function
PadBuffer Function
SensorStillActive Function
SetHashListEntry Function
SetupCalculatePubKeyHash Function
MainDemo
InitNVMemContents Function
ProcesslO Function
SaveNVMemContents Function

SavePowerMeterPreferences Function

Structures
G_PKEY_INFO Structure
GSTATUS_COUNTERS Enumeration

NV_MEM_STRUCTURE_OFFSETS Enumeration

PMButtonState Enumeration

PMCaptureMode Enumeration

POWER_METER_PREFERENCES Structure

PREF_LIST Enumeration

Macros
APPLICATION_BUILD Macro
DEVICE_MANUFACTURER Macro
DEVICE_MODEL Macro
DEVICE_NUM_SENSORS Macro
GOOGLE_DATA_PORT Macro
GOOGLE_HOST Macro
GOOGLE_STATUS_PORT Macro
GQ_NUM_QUEUES Macro
MAX_NUM_PUBKEY_HASH Macro
PUBKEY_HASH_SIZE Macro

Variables
AppConfig Variable
auth_path Variable

auth_token Variable

21
22
22
23
23
24
24
24
25
25
26
26
27
27
27
28
28
29

29
30
30
31
32
32
32
33

33
34
34
34
35
35
35
35
36
36
36

36
37
37
38

Microchip Google PowerMeter Reference

captureMode Variable 38
gActivationConfirm Variable 38
gActivationStringl Variable 38
gActivationString2 Variable 39
gActivationString3 Variable 39
gActivationString4 Variable 39
gActivationString5 Variable 39
gActivationString6 Variable 40
gCumulativePower Variable 40
goog_host Variable 40
gpkey_info Variable 40
gPowerMeterPreferences Variable 41
StackStartTime Variable 41
Index a

1.1 Additional Information Microchip Google PowerMeter Reference

Introduction

Google PowsrMater: Energy User's Home
Electricity used Oct 26-Oct 30
Dy Wingk Mot

4 P

Thumday Oct 20 Friday Oct 30

7.3 K Lises 5.1 KW R used

Apprax, $20U3yea o 41 Biysar

W Abwayd ot 37 KW s W Aty o0 2.2 KR s

Compared to others
Ve sge
o0t 30
a1 mWh
¥ =
— B

Compared ta past usage
24% over ewgaciod usags so far inday

5.1 kv e
| _ngea | meeming 1} 1

Managn Discuss b

The Google PowerMeter service provides the ability to view power usage data through a web-based interface. This data can
be uploaded to Google by embedded devices in breaker boxes, power strips, or even in electronics themselves. Tracking
power consumption will make users aware of the direct effect that using their devices has on their power bills, which will
allow them to adjust their power usage to lower their bills and avoid using devices during peak power consumption hours.
This makes the ability to monitor power consumption an attractive feature in a new device.

These demos and this code are intended to ease the addition of Google PowerMeter support to your devices. The TCP/IP
Stack Help file (installed with the Microchip Application Libraries) gives a detailed description of Microchip's TCP/IP Stack.
The code files provided by Google include:

File Function

ginsu.c/h Provides an interface between the Google reference code and Microchip's TCP/IP Stack. Contains functions
that the user may modify to customize his or her application (@ see page 11).

gcapture.c/h | Implements functions to determine when and how to capture power readings.

gcounter.c/h | Implements state counters, status counters, and timestamps used by the reference code. Provides functions
to get/set them.

gpubkey.c/h | Implements a system to store and compare hashes of server certificates' public keys. Comparing stored
hashes to hashes of a received certificate's key provides a workaround for the TCP/IP Stack's lack of server
certificate validation. This prevents man-in-the-middle attacks.

gqueue.c/h | Implements a queue to store power reading values and timestamps.
gsend.c/h Provides HTTP Client functionality to transmit power readings to the Google server.

gstatus.c/h | Provides HTTP Client functionality to transmit device status updates to the Google server. This information is
not viewable by the user as of March 15, 2010.

gutility.c/h | Implements utility functions for the Google reference code.

Additional Information

Where to find additional information about Google PowerMeter.

Description

The following links can provide you with more information about Google PowerMeter:

1.2 Getting Help Microchip Google PowerMeter Reference

« Google PowerMeter API Documentation -- Documentation & supporting material (client libraries, FAQs etc.) on the
Google PowerMeter API.

» Google PowerMeter Description -- A brief, non-technical description of how the Google PowerMeter service can help
conserve energy.

» Why Did Google Create PowerMeter? -- Answers to this and other questions that your customers will probably ask.

Getting Help

Where to get additional help with this demo and with Google PowerMeter.

Description

For additional help regarding any Microchip Technology products, including MPLAB IDE, the C18/C30/C32 compilers, the
Microchip TCP/IP Stack, or the demo hardware or firmware you can submit ticket requests at http://support.microchip.com.

For technical questions about Google PowerMeter or the Google PowerMeter Reference Code that can't be answered by the
sites in the Additional Information section, please email google-powermeter-partner-support@google.com.

For questions about Google PowerMeter contract, product, and legal issues, please contact
powermeter-partner@google.com.

http://code.google.com/apis/powermeter
http://www.google.org/powermeter
http://www.google.org/powermeter/faqs.html
http://support.microchip.com
mailto:google-powermeter-partner-support@google.com
mailto:powermeter-partner@google.com

2 Microchip Google PowerMeter Reference

SW License Agreement

Describes the licensing and terms of use of this distribution.

Description

The files in this demonstration are governed by multiple software license agreements.
Google Software License Agreement

All code made available by Google, Inc. (the code contained in gcapture.c, gcapture.h, gpubkey.c, gpubkey.h, gqueue.c,
gqueue.h, gsend.c, gsend.h, gstatus.c, gstatus.h, gutility.c, gutility.h, and ginsu.h) is licensed under the Apache License,
version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the
License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Microchip Technology Software License Agreement
The code made available by Microchip Technology, Inc. is governed under the following license agreement:

Microchip Demo Code for Google PowerMeter. Copyright 2010 Microchip Technology Inc. and its licensors. All rights
reserved.

Microchip licenses to you the right use, modify, copy, and distribute the accompanying Microchip demo code only when used
with or embedded on a Microchip microcontroller or Microchip digital signal controller that is integrated into your product or a
third party product. Any redistributions of Microchip's demo code in compliance with the foregoing must include a copy of this
entire notice.

THE MICROCHIP DEMO CODE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY,
TITLE, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROCHIP OR
ITS LICENSORS BE LIABLE OR OBLIGATED UNDER CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION,
BREACH OF WARRANTY, OR OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR
EXPENSES INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY,
SERVICES, ANY CLAIMS BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR
OTHER SIMILAR COSTS.

THIRD PARTY SOFTWARE: Notwithstanding anything to the contrary, any third party software accompanying this software
- including but not limited to Google's reference code - is subject to the terms and conditions of license agreement of such
third party, such as the Apache License Version 2.0 (www.apache.org/licenses/). To the extent required by such third party
licenses, the terms of the third party license will apply in lieu of the terms provided herein. To the extent the terms of such
third party licenses prohibit any of the restrictions described herein, such restrictions will not apply to such third party
software. THIRD PARTY SOFTWARE IS SUBJECT TO THE FOREGOING WARRANTY DISCLAIMER AND LIMIT ON
LIABILITY PROVIDED IN THE PARAGRAPH ABOVE.

3.2 Development Tools Microchip Google PowerMeter Reference

Running the Demos

Describes how to set up and run the demonstration projects.
Description

This section describes how to set up and run the demonstration projects.

Firmware Requirements

Describes the firmware required for this demo, and how to install it.
Description

You will require two firmware packages to run this demo. Each of these must be installed in the order listed, as some files
will be overwritten.

1. The Microchip Application Libraries, including TCP/IP Stack v5.25 or later. This code is available at
www.microchip.com/mal.

2. Microchip's Data Encryption Libraries. This demo uses the SSL security layer to communicate with Google. To use SSL
with the TCP/IP stack, you will require these libraries. They are available in a CD-based or downloadable format from
MicrochipDirect for a nominal $5 charge (required to comply with U.S. cryptographic export restriction screening). You
must execute the "Microchip TCPIP Stack vX.XX Encryption Add-on.exe" installer to install the files required by the demo.
The ARCFOUR.c/h and RSA.c/h cryptographic files in this installer will replace the dummy versions found with the default
TCP/IP Stack installation.

Development Tools

Describes the hardware and software tool that are required to run these demos.
Description

These projects are configured to use either the Explorer 16 development board (part number DM240001) or the
dsPIC33E/PIC24E USB Starter Kit + 10 Expansion board.

You will also need one of the following PICtail Plus daughter boards to provide TCP/IP connectivity:
« Ethernet PICtail Plus Daughter Board for 10Mbps (AC164123)

» Fast 100Mbps Ethernet PICtail Plus Daughter Board (AC164132)

* WIiFi® PICtail Plus Daughter Board (AC164136-2).

The demo projects that use the Explorer 16 development board require one of the following plug-in modules (PIMs). Note
that the Explorer 16 kit listed includes the PIC24F Plug-In Module (PIM).

* PIC24F 100P to 100P TQFP Plug-In Module with PIC24FJ128GA010 (MA240011)
* PIC32MX 100P to 100P Plug-In Module with PIC32MX360F512L (MA320001)

If you are using the Google PowerMeter EZConfig Demo, you will require the Explorer 16 and the WiFi PICtail Plus Daughter
Board.

If you are using the Energy Monitoring Demo, you will require the Explorer 16, PIC18F87J72 Energy Monitoring PICtail Plus
Daughter Board, the PIC24F PIM, and one of the listed TCP/IP PICtails.

http://www.microchip.com/mal
http://www.microchipdirect.com/ProductSearch.aspx?Keywords=SW300052
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en024858&part=DM240001
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en027750
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en543132
http://www.microchipdirect.com/ProductSearch.aspx?keywords=AC164136-2
http://www.microchipdirect.com/productsearch.aspx?Keywords=MA240011
http://www.microchipdirect.com/productsearch.aspx?Keywords=MA320001
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en550456
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en550456

3.2 Development Tools Microchip Google PowerMeter Reference
If you are using the dsPIC33E/PIC24E USB Starter Kit, you will require the Fast 100 Mbps Ethernet PICtail Plus Daughter
Board.

For information on how to connect these boards, please consult the TCP/IP Stack Help File, installed with the Microchip
Application Libraries.

Demo Compatibility Table

The following configurations are supported by default in these demos (some configuration (@ see page 6) may be
necessary).

Google PowerMeter demo

Demo Board Processor PICtail Comm.
Bus
Explorer 16 PIC24FJ128GA010 Ethernet PICtail Plus SPI
Explorer 16 PIC24FJ128GA010 Fast Ethernet PICtail Plus SPI
Explorer 16 PIC24FJ128GA010 WiFi PICtall SPI
Explorer 16 PIC32MX360F512L Ethernet PICtail Plus SPI
Explorer 16 PIC32MX360F512L Fast Ethernet PICtail Plus SPI
Explorer 16 PIC32MX360F512L WiFi PICtall SPI
dsPIC33E USB Starter Kit 33EP512MU810 Fast Ethernet PICtail Plus SPI2
dsPIC33E USB Starter Kit 33EP512MU810 Fast Ethernet PICtail Plus PSP 5
Indirect
PIC24E USB Starter Kit 24EP512GU810 Fast Ethernet PICtail Plus SPI2
PIC24E USB Starter Kit 24EP512GU810 Fast Ethernet PICtail Plus PiP 5
Indirect

Google PowerMeter EZConfig demo

Demo Board Processor PICtail Comm. Bus
Explorer 16 PIC24FJ128GA010 WiFi PICtail SPI
Explorer 16 PIC32MX360F512L WiFi PICtalil SPI

Energy Monitoring demo

Demo Board Processor PICtail Comm.
Bus
Explorer 16 PIC24FJ128GA010 Ethernet PICtail Plus SPI
Explorer 16 PIC24FJ128GA010 Fast Ethernet PICtail Plus SPI
Explorer 16 PIC24FJ128GA010 WiFi PICtail SPI

Software Requirements

These demos will require the MPLAB IDE (v8.43 or later) and the Pro, Standard, or Lite version of the C30 compiler (v3.21
or later) if using the PIC24F or dsPIC33 architectures, or the Pro, Standard, or Lite version of the C32 compiler (v1.10b or
later) if using the PIC32 architecture. If using the PIC24FJ128GA010 with the WiFi PICtail, you will require the Pro or
Standard version of the C30 compiler, as the unoptimized code will exceed the part's flash memory size. See Microchip's
compiler page for more information.

Other Tool Requirements
You will need a programmer to program the demo code into the devices. Available options include:

« MPLAB REAL ICE In-Circuit Emulator (DV244005)
« MPLAB ICD 3 In-Circuit Debugger (DV164035)

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en534868
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en028120&redirects=realice
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en537580&redirects=icd3

3.3 Configuration and Programming Microchip Google PowerMeter Reference

PICkit 3 In-Circuit Debugger (DV164131)

Configuration and Programming

Describes how to configure. compile, and program the demo code into your device.

Description

There are several steps to take to configure, compile, and program your code.

1.

Open your project directory ("[i nstal | directory]\TCPI P\ Googl e Power Meter", "[install
di rectory]\ TCPI P\ Googl e Power Meter EZConfig", or "[install directory]\TCPlIP\ Energy
Moni toring").

. Open the workspace that corresponds to your Hardware Setup. For example, the workspace

"C30-EX16_PIC24F_MRF24WB.mcw" corresponds to the PIC24FJ128GA010 PIM, using the MRF24WBOM WiFi PICtail.
The workspace you open will define a macro that will automatically include the correct configuration files (located in the
"Configs" folder).

. Open the TCPI PConf i g. h header file. Search for the MAC address macros (MY_DEFAULT_MAC_BYTEN). Replace the

values for MAC bytes 5 and 6 with the hexadecimal representation of the MAC address sticker on your PICtail (e.qg.
sticker value 12345 would produce MAC address 00:04:A3:00:30:39). You can skip this step when using the WiFi or
ENCX24J600 physical layer (the code will use the built-in MAC addresses if the default value is unchanged).

#defi ne MY_DEFAULT_MAC BYTE1l (0x00) /1 Use the default of

#defi ne MY_DEFAULT_MAC BYTE2 (0x04) /
#define MY_DEFAULT_MAC BYTE3 (OXA3) /
#defi ne MY_DEFAULT_MAC BYTE4 (0x00) /
#define MY_DEFAULT_MAC BYTES (0x00) /
#defi ne MY_DEFAULT_MAC BYTE6 (0x00) /

5.

00- 04- A3-00-00-00 if using

an ENCX24J600 or ZeroG ZG2100
and wi sh to use the internal
factory programred NMAC

addr ess i nst ead.

—~——— — —

If you are using the WiFi PICtail, configure your wireless settings to match your wireless router. See the WiFi Getting
Started documentation in the TCP/IP Stack Help File for instructions on how to do this. If you are using the EasyConfig
Demo, you can skip this step (you will connect directly to the demo board and configure it via web page).

. Compile your project and program your device.

7. Press and hold Button 0 on your development board (usually the rightmost or topmost button). Press and release the
MCLR button, or remove and reapply power from your board. After four seconds, several LEDs will blink. Release Button
0. This will reset the EEPROM on the development board. You must reset the EEPROM every time your change the
device's configuration information (e.g. the Google PowerMeter capture interval or wireless router SSID). This will allow
the new configuration information to be uploaded to the EEPROM and prevent out-of-date information from being loaded
by the application.

. Ensure that your board and PC are connected to the same network. If you are using a wired Ethernet solution (ENC28J60

or ENC624J600) plug your computer and board into the same router, or connect them to each other directly with a
crossover cable. If you are using the WiFi PICtail Plus, ensure that your computer is connected to the router used for step
5. If you are using the EasyConfig demo, the board will form its own AdHoc network, called "PowerMeterDemo." You
should configure your computer to connect directly to this network.

9. Upload the demo web page to the board.

« Ensure that your computer and your demo board are attached to the same local area network.
* Open the MPFS2 utility installed with the TCP/IP Stack.

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en538340&redirects=pickit3

3.4 Authentication Microchip Google PowerMeter Reference

» Set the source directory to the WebPages directory in your project directory.
e Set the output to "BIN Image."
« Select the project directory in the "Output Files" box.

» Set the upload path to ht t p: / / power net er (or to the IP address of your board), using the path npf supl oad, the
user name admi n, and the password i cr ochi p. Note that you can only use the NetBIOS name (power net er) if the
board is on the same subnet as the PC you use to connect to it. If you are using the EasyConfig Demo, use the board's
IP address (default: 169.254.1.1) instead of its NBNS name.

« Generate and upload the web page. If the upload is unsuccessful, try using the board's IP address instead of the
http://powernet er NetBIOS name.

10. If you are using the EasyConfig Demo, open your computer's web browser and navigate to your board's IP address
(http://169.254.1.1 by default). You should be redirected to the Network Configuration page. Click the button to Scan for
Wireless Networks. A list of available networks, their signal strength, and their security status will be generated. Click on
the network your board will join, and enter any relevant security information. Note that this functionality is unavailable on
some browsers (e.g. Internet Explorer 7). Connect your computer to the network you connected your board to.

Authentication

Describes how to authenticate your device.

Description

This section describes how to authenticate your device. Google PowerMeter applications require an authentication step
before use. This process creates a data storage area for your meter on the Google server, and provides the device with an
authentication token (auth_token (& see page 38)), authentication path (auth_path (@ see page 37)), and three SHA-1 hash
results. These are the hashed values of potential server certificates that Google servers may use. By comparing these
hashes to the calculated hash values of a certificate received from a server the device is uploading data to, the device will be
able to prevent man-in-the-middle attacks. This compensates for the lack of server certificate validation in Microchip's
TCP/IP Stack SSL module.

To authenticate your device:

1. Open the web browser on your PC and navigate to http://powermeter. Note that if an old IP address association has been
cached in your PC's memory for this NetBIOS name, the browser may not be able to navigate to the correct IP address. If
this occurs, use the IP address displayed on your board's LCD screen. If you're using a board without an LCD, use
Microchip's "TCPIP Discoverer" application (see the TCP/IP Stack help file for more information) to determine your
device's IP address.

r 2§ Google L - -
C A <% http://powermeter

@ http://powermeter/

O, http://powermeter - Google Search

2. The initial index page contains information about the Google PowerMeter project. To authenticate your device, navigate to
the "Sample User Page" on the menu.

AT\ MicrocHIp

TCP{IP Stack Demeo Application

Hang Google PowerMeter Demo

evelopment
Debugging This site gives you an ovendew on how to integrate your device with Google

Powerheter

Overview

gadget, The dat.
ey for the cormumer) but is currently

Before a Customer Can View Data...

L. The customer creates a personal Google sccount,

2. Dewices monitonng snergy consumplion get activated and subssquently
authorized to updoad data to Google Powerkis:

3, The customer comoletes the short enroliment process, which

3. Read Google's Terms of Use and Privacy Policy, and click "I Accept" if you wish to accept the terms outlined within. This
page will also give you the option to provide sensor status updates to Google.

3.5 Operation Microchip Google PowerMeter Reference

AT\ MicRocHIP

TR/ I Stack Demo Application

Homa Google PowerMeter Demo

DBavelopment

Debugging Device Setup

Raview the Terms of Use for the Google PowerMeter service, and chck "1

Aecept” If you sgroa to thom,

[5] 1 would ke to provide power usage data to Google.

| Aapapt

4. You will be redirected to a Google-hosted website, and prompted to enter your Gmail address and password. The

mechanism that redirects you to this site will upload information about your device, including the device ID, model name,
manufacturer name, and the number of sensors. For this demo, the device ID is based off of your board's MAC address
and the model and manufacturer are preset.

. Enter your Gmail address and password, or create a new Gmail account. If you are already signed into Gmail or iGoogle
on your PC, you will automatically skip to step 6.

. You will be redirected to a Google-hosted site that will allow you to add an electricity measurement device. Verify that
your device ID is the same as the MAC address you configured. Enter your geographical location, and verify that there
are three data source Title boxes. click on "Activate this device" to complete this step.

Google powermetsr

Add a new electricity meagurament device
Hird you con sdd 3 rw sRcticity Messirament dinics 1o o Prastister sceoa
Electricity measurement device details:

Mo
Adaddt

Tell ugs about the electricity you'ne measuring:

I arkar e Conactly anahs you dits, Poasrati nosds 1o ko
distinct nam 5o et o can bl tharn apar Lt

e pprodeans geopraphic lacaton of your dEClcly MRt diice. s 1S 1

Gaographic Lozation: | Chandkar, AZ LSA

Measurement #11ide |Explorarts Demo - 1
2 1ile; |[Exploraris Doma - 2
3 1ile |Exploarts Doma- 3

Artrente this deice

7. Google will send an HTTP POST message with the activation parameters back to the PIC through the browser. At this

point, some browsers may report that the data transmission is not secure; this occurs because the packets sent by the
browser to the board are not encrypted. This application model assumes that the device is connected on a secure, trusted
local area network, so this lack of encryption should not be a problem. This step won't compromise the activation
information to the internet as long as you are using a secure wireless network. If you wish to secure this data on the local
area network, you can implement your application so that the board is an SSL server.

8. When the activation data reaches the board, the device will automatically redirect the browser to a URL that will complete

and confirm the activation. This page will also allow you to add a Google PowerMeter gadget to your iGoogle home page.

Operation

Describes the operation of the demos.

Description

The basic demo and EZConfig demo create 3 pseudo-meters.

The first will generate data on a triangle wave.
The second will sample the value of the potentiometer and send data proportional to that value.

During this demo, pressing each push-button on the board will toggle an LED. The third sensor will detect the state of
these LEDs and upload a power consumption reading equivalent to one 60W light bulb for every LED on when data is
captured.

The Energy Monitoring demo creates a single sensor that corresponds to the power consumption measured by your
PIC18F87J72 Energy Monitoring PICtail Plus Daughter Board.

One data measurement for each sensor will be sent to the Google PowerMeter server every 10 minutes- this is the
server-limited upload frequency. You can view a graph of these values on your iGoogle page. To view each data point
individually, select the "Manage" option on your Google PowerMeter gadget, and choose to "Download Spreadsheet" or
"Download Raw Data" for the sensor you are interested in.

3.5 Operation Microchip Google PowerMeter Reference

By default this demo will attempt to use the Simple Network Time Protocol (SNTP) to determine the values of timestamps of
data captures. In rare occasions, some locations may block the UDP port used by the SNTP protocol (port 123). This can
prevent the SNTP module from accessing the global SNTP server (pool.sntp.org). If this port is blocked, the code will
attempt to establish an HTTP client connection to an external web site and parse the time from the response if the response
is an HTTP OK message. If you find that your device is able to complete authentication but does not upload data, it may not
be able to get a time stamp value successfully. If this is the case, you can change the SNTP server by redefining the
NTP_SERVER macro in SNTP. c to a local SNTP server or you can change the HTTP server by changing the initialization
parameters for the Ser ver Name and Renpt eURL variables in HTTPTi ne. c.

4.2 How the Web Page Works Microchip Google PowerMeter Reference

Using the Code

Describes how the application works, and how you can use the demo to create a custom application.

Description

Describes how the application works, and how you can use the demo to create a custom application.

How the Application Works

Describes the operation of the Google PowerMeter application.

Description

These demos are designed to use a cooperative multitasking environment (see the TCP/IP Stack Help file for more
information). The Google PowerMeter API is executed as one task in this environment. Every time this task is called, it
determines if there are any pending data collection, data transmission, or status transmission tasks to accomplish. The
intervals for each of these activities (referred to as preferences) are set by the user in the | ni t Power Met er Pr ef er ences
function in Mai nDeno. c. These preferences, along with the TCP/IP Stack's AppConfi g (& see page 37) structure, are
stored in EEPROM. Note that the code to store preferences and AppConfig (&@ see page 37) information in SPI Flash
is not functional yet.

If it is necessary to capture data, the code will determine if each sensor is active, and if so, use the Get Cunul at i vePower
(@ see page 18) function to add the number of watt-hours consumed since the last capture to a cumulative power
consumption value. It will also add the cumulative value and the time at which it was captured to a queue of data points.

If the task determines that a sufficient interval has passed since the last data transmission attempt, it will open a secure
socket to an upload path (determined at activation), and transmit the queued data points. The device functions as an HTTP
client for this process.

During these operations, the device stores the count of transmitted packets, count of errors, and other status information in a
series of 32-bit counters. When it's time to update device status information, the meter will determine a signal quality value
from these counters, and upload this value and other information from these counters to the server. As of May 2010, it is not
possible for the user to view the content of these status updates.

How the Web Page Works

Describes the operation of the Google PowerMeter Demo web page.
Description
Basic Demo
The sample web page included with the Basic Demo application is divided into three parts.
The index page (i ndex. ht m) contains links to Google PowerMeter information and support pages.

The Development Debugging Page (debug. ht m) describes and displays the application's preference and configuration
information. This will help you debug your application by allowing you to correlate authentication information on your device
with the authentication information sent by Google servers (which is viewable on your iGoogle gadget's management page).
You can also modify this web page and the HTTPPri nt . h file to display additional debugging variables (see the TCP/IP
Stack Help File's HTTP2 section for information on dynamic variables).

10

4.3 Creating a Custom Application Microchip Google PowerMeter Reference

The third page demonstrates the functionality of a page that an end user might see. The link to "Sample User Page" in the
menu actually links to the / t er ms. ht n? page. The '?" in the link will automatically trigger an HTTP GET operation when the
link is clicked. At this point, the device will determine whether it has already been activated.

« If the device has not been activated, it will continue loading the t er ms. ht mpage. This page will prompt the user to read
the terms of use, and give them the checkbox option to automatically transmit status information to the Google servers.
Once the user reads the terms and clicks the "I Accept" button, the browser will generate an HTTP POST message
containing the status of the checkbox. The device will use the checkbox information to set a flag in the
PONER_METER _PREFERENCES (@ see page 32) structure that determines whether status information is sent to the
Google servers. It will then construct a Google activation URL and redirect the user's browser to that address. This
activation URL will contain a return URL leading to the local / r et ur n. ht mpage. The Google servers will send a POST
back to return.htm (via the browser) containing the activation information. The return page will process this information,
then redirect the browser to an activation finalization URL.

» If the device is activated, the HTTP GET processing function will automatically redirect the user's browser to the
[acti vat ed. ht mpage. This page displays some device parameters using dynamic variables, and contains three form
buttons. The first will repeat the activation process. The second will empty the POAER_METER _PREFERENCES (@ see
page 32) structure (to indicate that the device is deactivated) and redirect the user to a page that tells them how to
manually remove the device from their Google PowerMeter gadget. The third will toggle the status transmission flag.

EZConfig demo

The EZConfig Demo page is similar to the Basic Demo page, with a few key differences. The index.htm page will now
automatically redirect the browser to index.htm?, which will generate an HTTP GET. If the WiFi module is still configured to
start in AdHoc mode, the browser will be redirected to configure.htm. This page will allow the user to configure the WiFi
module to connect to a router, which will act as a gateway to allow the board to upload data to the internet. If the board has
already been configured to connect to a gateway, index.htm will redirect the user to info.htm, which will provide the same
information found in the Basic Demo's index page. The user will be able to access the network configuration page through
the navigation menu if it's necessary to reconfigure the WiFi module's network connection information.

Energy Monitoring demo

The Energy Monitoring demo uses two pages: the first displays dynamically updated power consumption data from the
Energy Monitoring PICtail and the second provides Google PowerMeter activation functionality and configuration information.

Creating a Custom Application

Describes how to modify the demo code to create a custom application.

Description

There are several steps that must be taken to create a custom application:

» Decide how many sensors your application will use.
e Change the GQ_NUM QUEUES (@ see page 36) definition in gqueue. h to this number.

e Change the GSTATUS_COUNTERS (@ see page 30) enumerationt ypedef in gcount er. h to include one
G_SEND_ATTEMPTNn state at the beginning for each sensor (e.g. ensure that the first 4 values in the enumeration are
G_SEND_ATTEMPTO, G_SEND_ATTEMPT1, G_SEND_ATTEMPT2, and G_SEND_ATTEMPT3 if you have 4 sensors). This
will allow the module to store the correct number of transmission attempts for each sensor.

» Change the number of sockets allocated in TCPIPConfig.h. You will need one TCP_PURPOSE_DEFAULT socket for
each sensor.

* Change the to_send[] SENDER | NFOarray in gst at us. ¢ to upload status values for the correct number of
sensors. The commented sections in the following code example demonstrate which status parameters must change,
depending on the number of sensors. The example shows the proper configuration for three sensors.

static SENDER I NFO to_send[] = {

{(FUNC_OR _STRING) header_get, (FUNC_ARG OL, ROM STRI NG},

{(FUNC_OR STRING status_urll, (FUNC ARG OL, ROM STRI NG,

{(FUNC_OR_STRING) (ROM BYTE *) DEVI CE_MANUFACTURER, (FUNC_ARG) OL, ROM STRING},
{(F

UNC_OR STRING) status_url2, (FUNC_ ARG OL, ROM STRING,

11

4.3 Creating a Custom Application

UNC_OR_STRI NG
NC_OR_STRI NG)

> OR_STRI NG
NC_OR_STRI NG
1 (offset 0)
{ (FUNC_OR_STRI NG
sensor 2 (offset 1)
{ (FUNC_OR_STRI NG
sensor 3 (offset 2)
{ (FUNC_OR_STRI NG

{ (FUNC_OR_STRI NG

{ (FUNC_OR_STRI NG
FUNC_OR_STRI NG
UNC_OR_STRI NG
UNC_OR_STRI NG
UNC_OR_STRI NG
UNC_OR_STRI NG
u
U

se

NC_OR_STRI NG)
NC_OR_STRI NG)
UNC_CALL},

UNC_OR_STRI NG
UNC_OR_STRI NG)
UNC_CALL},

UNC_OR_STRI NG)
UNC_OR_STRI NG)
UNC_CALL},

UNC_OR_STRI NG)
UNC_OR_STRI NG)
UNC_OR_STRI NG)
U

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
FUNC_OR_ STR NG)
FUNC_OR_STRI NG
FUNC _CALL},
FUNC_OR_STRI NG
FUNC_OR_STRI NG)
FUNC_CALL},
FUNC_OR_STRI NG
FUNC_OR_STRI NG)
FUNC_OR_STRI NG
FUNC_OR_STRI NG)
F
F
FUNC_OR_STRI NG
FUNC_CALL},
FUNC_OR_STRI NG
(of fset 0)
{(FUNC_OR_STRI NG
(of fset 1)
{(FUNC_OR_STRI NG
(of fset 2)
{(FUNC_OR_STRI NG
sensor 1 (offset 0)
{ (FUNC_OR_STRI NG
sensor 2 (offset 1)
{ (FUNC_OR_STRI NG
sensor 3 (offset 2)
{ (FUNC_OR_STRI NG
sensor 1 (offset 0)
{ (FUNC_OR_STRI NG
sensor 2 (offset 1)
{ (FUNC_OR_STRI NG
sensor 3 (offset 2)
{(FUNC_OR_STRI NG
{ (FUNC_OR_STRI NG
{ (FUNC_OR_STRI NG
{ (FUNC_OR_STRI NG

{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
{(
f

Microchip Google PowerMeter Reference

(ROM BYTE *) DEVI CE_MODEL, (FUNC _ARG) OL, ROM STRI NG,
devi ce_param (FUNC_ARG OL, ROM STRI NG}
Devi cel d, (FUNC ARG OL, FUNC CALL},

bui | d_par am (FUNC ARG OL, ROM STRI NG,
Devi ceBui | d, (FUNC_ARG OL, FUNC_CALL},
upti me_param (FUNC_ARG) OL, ROM STRI NG,
Uptime, (FUNC_ ARG OL, FUNC CALL},
MaybeReboot, (FUNC ARG) OL, FUNC CALL},
Signal Quality, (FUNC_ARG OL, FUNC CALL}, /1 Get signal

Signal Quality, (FUNC_ ARG 1L, FUNC CALL}, /1 Get signal

Signal Quality, (FUNC_ ARG 2L, FUNC CALL}, /1 Get signal
xfer_attenmpt
GenCount er,
xfer_success_param (FUNC_ARG OL, ROM STRI NG,
GenCounter, (FUNC ARG (INT32) G SEND SUCCESS, FUNC CALL},
xfer_time_param (FUNC ARG OL, ROM STRI NG,

XferTime, (FUNC ARG OL, FUNC CALL},

xfer_result_param (FUNC_ARG OL, ROM STRI NG,

_param (FUNC_ARG) OL, ROM STRI NG,

GenCount er, (FUNC_ARG) (1NT32) G SEND RESULT, FUNC CALL},
capture_attenpt_param (FUNC ARG OL, ROM STRI NG,
GenCount er, (FUNC ARG (1NT32) G CAPTURE_ATTEMPT,

capt ure_success_par am
GenCount er, (FUNC_ARG

(FUNC_ARG) OL, ROM STRI NG,
(I NT32) G CAPTURE_SUCCESS,

error_bad_param (FUNC ARG OL, ROM STRI NG,
GenCount er, (FUNC_ARG) (1NT32) G ERROR BAD STATE,

error_timeout _param (FUNC_ARG OL, ROM STRI NG,
CGenCount er,
error_space_param (FUNC ARG) OL, ROM STRI NG,

GenCounter, (FUNC_ARG (INT32) G _ERROR_NO SEND SPACE,

error_val ue_param (FUNC ARG OL, ROM STRI NG,
GenCount er, (FUNC_ARG) (1NT32) G ERROR BAD_VALUE,

error_socket _param (FUNC ARG OL, ROM STRI NG,
GenCounter, (FUNC_ ARG (I1NT32) G _ERROR _NO SOCKET,

error_status_param (FUNC ARG OL, ROM STRI NG,

GenCount er, (FUNC ARG (INT32) G STATUS RESULT, FUNC CALL},
error batch success_param (FUNC_ARG) OL, ROM STRING,
GenCount er, (FUNC_ARG) (INT32) G BATCH SEND SUCCESS,

error_batch_param (FUNC_ARG OL, ROM STRI NG,

GenCounter, (FUNC ARG) (INT32) G BATCH SEND RESULT,

QueueSi ze, (FUNC_ARG 0L, FUNC CALL}, /'l CGet queue size
QueueSi ze, (FUNC_ARG 1L, FUNC_CALL}, /] Get queue size
QueueSi ze, (FUNC_ARG 2L, FUNC_CALL}, /'l Get queue size
Pkt Count, (FUNC_ARG OL, FUNC _CALL}, /'l Get packet

Pkt Count, (FUNC_ARG 1L, FUNC CALL}, /'l Get packet

Pkt Count, (FUNC ARG 2L, FUNC CALL}, /'l Get packet

Pkt Ski p, (FUNC_ARG) OL, FUNC CALL}, /1 Get packet

Pkt Ski p, (FUNC_ARG) 1L, FUNC CALL}, /1 Get packet

Pkt Ski p, (FUNC_ARG) 2L, FUNC CALL}, /1 Get packet

pub_hash_success_param (FUNC_ ARG OL, ROM STRI NG,
PubHashSuccess, (FUNC ARG OL, FUNC CALL},
pub_hash_att enpt _param (FUNC ARG 0L, ROM STRI NG,
PubHashAtt enpt, (FUNC_ARG) OL, FUNC CALL},

(FUNC_ARG) (INT32) G _SEND ATTEMPTO, FUNC CALL},

(FUNC_ARG) (INT32) G ERROR TI MEOUT, FUNC CALL},

quality for
quality for

quality for

for sensor
for sensor

for sensor

TX count for
TX count for
TX count for
skip count for
ski p count for

ski p count for

4.3 Creating a Custom Application Microchip Google PowerMeter Reference

}

{(FUNC_OR_STRING header_http_host, (FUNC_ARG OL, ROM STRI NG,
{(FUNC_OR_STRI NG goog_host, (FUNC ARG 0L, ROM STRI NG,

{(FUNC_OR _STRI NG header_agent _connecti on, (FUNC ARG OL, ROM STRI NG,
{(FUNC_OR_STRING ((ROM BYTE *) NULL), (FUNC_ARG OL, NO MORE},

Change the implementation of the Get Cunul ati vePower (@ see page 18) function in the gi nsu. c file. This
function is called when the code attempts to capture data. It accepts three arguments: whi ch indicates which sensor or
meter the code is accessing, t i mest anp points to a location to which the UTC timestamp should be written, and wat t s
points to a location to which a 64-bit cumulative sum of instantaneous power readings (in watt-hours) should be written.
You can use the Get Pref erencel nt 32 (@ see page 20) function to determine the capture interval; this is the time
period since the last capture. You can use this and an instantaneous measure of power consumption to estimate the
amount of power consumed since the last capture. See the LED-based example meter for a demonstration. Note that as
the capture interval decreases, the accuracy of the estimate increases. Decreasing the capture interval too far can
increase the risk of overrunning the end of the queue and losing data, though.

Change the other functions that use the 'which' parameter to reflect the number of sensors that you'd like to use. This
includes the functions Get SQ (@ see page 21),CGet SQDetails (@ see page 22),and Sensor Still Active
(@ see page 26) inginsu.c.

Review the function implementation in gi nsu. ¢, and customize any functions that require different implementation for
your application.

Change the manufacturer name and model number of your device. These values are defined as

DEVI CE_MANUFACTURER (@ see page 34) and DEVI CE_MODEL (@ see page 34) ingi nsu. h. You can also
change the method for generating device IDs (in Cust omHTTPApp. ¢ and gst at us. c); using the MAC address as the
device ID will ensure that each device you produce has a unique ID, though. The Devi cel Dfunction in gst at us. ¢
provides the device ID for status messages, and the HTTPPost Aut henti cate (@ see page 15) and

HTTPPost Aut hi nfo (@ see page 15) functions in Cust omHTTPApp. ¢ provide it for authentication.

Change the value of the HTTP_MAX_DATA_LEN macro in TCPI PConf i g. h. This macro controls the size of the buffer
used for sending or receiving POST data. You may need to increase this value depending on the length of the

DEVI CE_MANUFACTURER (@ see page 34) and DEVI CE_MODEL (@ see page 34) macros, or if there is a
change in the Google PowerMeter API that would increase the length of transmitted or received POST messages.

Customize your activation web page. You will also need to determine how the device attaches to your local network to be
activated. For one device, the NetBIOS name can provide access to the device, but for multiple devices on one network,
some method must be implemented to determine which device is being accessed.

13

5.1 Functions

Microchip Google PowerMeter Reference

Application API

Describes functions and structures used by this demo.

Functions

Describes the functions used by this demo.

CustomHTTPApp

Functions
Name
“ HTTPDeactivateDevice (@
see page 14)
A HTTPPostAuthenticate (@
see page 15)
e HTTPPostAuthinfo (@ see
page 15)
Description

Description
Deactivates a device.

Redirects a browser to the activation URL on Google's site.

Parses data from a post-activation POST message.

Describes web-page handling functions implemented in CustomHTTPApp.c.

HTTPDeactivateDevice Function

Deactivates a device.
File

CustomHTTPApp.c
Cc

static HTTP_I O RESULT HTTPDeacti vat eDevi ce();

Description

CustomHTTPApp

This function will invalidate the token value in the Google PowerMeter preferences structure. This will prevent the device
from uploading data. This function will not remove the device from the Google PowerMeter gadget on the user's iGoogle

page.
Preconditions

None
Return Values

Return Values
HTTP_1O_DONE

Function

Description

the parameter has been found and saved

static HTTP_IO_RESULT HTTPDeactivateDevice(void)

14

5.1 Functions Microchip Google PowerMeter Reference CustomHTTPApp

HTTPPostAuthenticate Function

Redirects a browser to the activation URL on Google's site.
File

CustomHTTPApp.c
Cc

static HTTP_I O RESULT HTTPPost Aut henti cate();
Description

This function will load the activation URL into the curHTTP.data buffer and then queue up an HTTP redirect action for the
browser that caused this function to be called. This will cause the activation information for the device to be submitted to
Google servers.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE the parameter has been found and saved

HTTP_IO_WAITING the function is pausing to continue later

HTTP_IO_NEED_DATA data needed by this function has not yet arrived
Function

static HTTP_IO_RESULT HTTPPostAuthenticate(void)

HTTPPostAuthinfo Function

Parses data from a post-activation POST message.
File

CustomHTTPApp.c
Cc

static HTTP_I O RESULT HTTPPost Aut hi nfo();

Description
After activation, the Google servers will redirect the browser back to the return URL provided to them with a message
containing POST data. This function will parse the data to check the security nonce, read the authentication token and path,
and read the server certificate hashes. If these values were received successfully, the function will load the URL that
completes the activation process into curHTTP.data and then redirect the browser to that URL.

Preconditions

None

Return Values

Return Values Description

HTTP_IO_DONE the parameter has been found and saved
HTTP_IO_WAITING the function is pausing to continue later
HTTP_IO_NEED_DATA data needed by this function has not yet arrived

15

5.1 Functions Microchip Google PowerMeter Reference ginsu

Function

static HTTP_IO_RESULT HTTPPostAuthinfo(void)

Describes Google PowerMeter interface functions implemented in ginsu.c.

ginsu
Functions

Name

@ CalculatePubKeyHash (@
see page 17)

@ ConvertUtcSecToString (@
see page 17)

v GetBuildNumber (@ see page
18)

“ GetCumulativePower (=@ see
page 18)

“ GetHashListEntry (@ see
page 19)

A Getlpv4 (@ see page 19)

@ GetMac (@ see page 20)

“ GetPreferencelnt32 (@ see
page 20)

“ GetPreferenceStr (@ see
page 21)

“ GetSQ (@ see page 21)

v GetSQDetails (@ see page
22)

“ GetUptimeSec (@ see page
22)

“ GetUtcTimeSec (@ see page
23)

“ GetWebPort (@ see page 23)

@ GInitForWork (@ see page 24)

A GPollForWork (& see page
24)

“ GSendinit (@ see page 24)

@ GUpdateNVRam (@ see
page 25)

“ PadBuffer (@ see page 25)

e SensorStillActive (@ see
page 26)

“ SetHashListEntry (@ see
page 26)

@ SetupCalculatePubKeyHash
(& see page 27)

Description

Description
Calculate the public key hash for the current HTTPS socket.

Converts a UTC timestamp to a string

Returns the build number

Gets the current cumulative power for a given MTU.
Returns a pointer to a public key hash.

Returns the device's IPv4 address
Returns the device's MAC address
Returns an INT32-type power meter preference

Returns a string-type power meter preference

Returns a signal quality value for the MTU.
Returns details about the signal quality value.

Returns the time that the stack has been active
Returns a UTC timestamp

Returns the web port to use to communicate
Initializes the Google PowerMeter state machine.
Task for the Google PowerMeter application

Sets the next communication to an initial communication.
Updates non-volatile memory with the current hash values

Pads a hour/minute/second value to include a leading zero
Determines if a given sensor is still active.

Sets the value of a public key hash

Sets up the check of the public key hash from the Google servers.

Describes Google PowerMeter interface functions implemented in ginsu.c.

16

5.1 Functions Microchip Google PowerMeter Reference ginsu

CalculatePubKeyHash Function

Calculate the public key hash for the current HTTPS socket.
File
ginsu.h

C

voi d Cal cul at ePubKeyHash(
Ul NT8 socket,
I NT8 * current_hash

)
Description

Calculates the public key hash for the specified socket. When the HTTPS socket was opened, its public key information was
copied into the local G_PUBKEY_INFO structure. This function will hash that data.

Preconditions

None
Parameters

Parameters Description

socket The socket that will be hashed.

current_hash Pointer to the return value for the hash calculation.
Function

void CalculatePubKeyHash(UINT8 socket, INT8 *current_hash)

ConvertUtcSecToString Function

Converts a UTC timestamp to a string
File
ginsu.h

C

voi d Convert Ut cSecToSt ri ng(
I NT32 utc,
char* time_str

)

Description

This function will convert a UTC timestamp to an RFC-specified string format representation of that value.

Preconditions

None
Parameters

Parameters Description

utc The UTC timestamp to be converted

time_str A string pointing to the buffer that will contain the result.
Function

void ConvertUtcSecToString(INT32 utc, char* time_str)

17

5.1 Functions

Microchip Google PowerMeter Reference ginsu

GetBuildNumber Function

Returns the build number
File

ginsu.h
Cc

I NT32 Get Bui | dNunber () ;
Description

Returns the build number
Preconditions

None
Return Values

Return Values
INT32

Function
INT32 GetBuildNumber(void)

Description
The build number for this demo.

GetCumulativePower Function

Gets the current cumulative power for a given MTU.

File
ginsu.h

Cc

voi d Get Currul ati vePower (

I NT16 whi ch,
I NT32 * tinestanp,
I NT64 * watts

)

Description

This function will obtain a reading of the current cumulative power consumed by the MTU, in watt-hours. This function will
sample the 'meter' sources, correct the readings based on the capture interval, and add them to the cumulative reading.

Preconditions
None
Parameters

Parameters
which
timestamp
watts

Function

Description

Indicates which MTU to return the power value for

Pointer to the INT32 into which the current UTC time should be copied

Pointer to the INT64 into which the current cumulative power should be copied

void GetCumulativePower(INT15 which, INT32 *timestamp, INT64 *watts)

18

5.1 Functions Microchip Google PowerMeter Reference

GetHashListEntry Function

Returns a pointer to a public key hash.
File
ginsu.h

C

const | NT8 * GetHashLi stEntry(
I NT8 hash_sl ot
)

Description

Returns a pointer to a public key hash.

Preconditions

None
Parameters
Parameters Description
hash_slot Specifies the hash to locate.

Return Values

Return Values Description
const INT8 * The hash value pointer
Function

const INT8 *GetHashListEntry(INT8 hash_slot)

Getlpv4 Function

Returns the device's IPv4 address
File
ginsu.h

C

U NT32 Getl pv4();
Description

Returns the device's IPv4 address
Preconditions

None

Return Values

Return Values Description
UINT32 The device's IPv4 address
Function

UINT32 Getlpv4(void)

ginsu

19

5.1 Functions Microchip Google PowerMeter Reference ginsu

GetMac Function

Returns the device's MAC address
File
ginsu.h

C
const UI NT8 * Get Mac();

Description

Returns the device's MAC address. Byte[0] is the most significant byte; byte[5] is the least significant byte. This value is not

null-terminated.
Preconditions
None
Return Values

Return Values
UINT8*

Function

const UINT8 *GetMac(void)

Description
Pointer to the MAC address

GetPreferencelnt32 Function

Returns an INT32-type power meter preference

File
ginsu.h

Cc

I NT32 Cet Preferencel nt 32(
PREF_LI ST whi ch
)

Description

This function returns an INT32-type power meter preference.

Preconditions

None
Parameters

Parameters
which

Return Values

Return Values
INT32

Description
Specified which preference to return.

» CAPTURE_SEC_INT - The capture interval frequency (seconds)
« SEND_SEC_INT - The data transmission frequency (seconds)
« SEND_STATUS_INT - The status transmission frequency (seconds)

Description
The preference value.

20

5.1 Functions Microchip Google PowerMeter Reference

Function

INT32 GetPreferencelnt32(PREF_LIST (@ see page 33) which)

GetPreferenceStr Function

Returns a string-type power meter preference
File
ginsu.h

C

const char * GetPreferenceStr(
PREF_LI ST whi ch
)

Description

This function returns a string-type power meter preference.

Preconditions

None
Parameters
Parameters Description
which The preference to return

* AUTH_TOKEN_STR - The authorization token
* AUTH_PATH_STR - The authorization path

Return Values

Return Values Description
const char * Pointer to the preference string.
Function

const char *GetPreferenceStr(PREF_LIST (@ see page 33) which)

GetSQ Function

Returns a signal quality value for the MTU.
File
ginsu.h

C

U NT32 Get SQ
I NT16 whi ch
)

Description

ginsu

Returns a signal quality value for the MTU. This function returns non- zero if the sensor is active. If zero is returned, then
assume there is no sensor. If the packet error count is high, it may be possible to get some packets but end up with a zero

signal quality value. In this case, the sensor can be treated as missing.

Preconditions

None

21

5.1 Functions Microchip Google PowerMeter Reference

Parameters
Parameters Description
which Indicates which MTU quality to check.

Return Values

Return Values Description
UINT32 The signal quality value.
Function

UINT32 GetSQ(INT16 which)

GetSQDetails Function

Returns details about the signal quality value.
File
ginsu.h

C

voi d Get SQDet ai | s(
I NT16 whi ch,
Ul NT32 * count,
U NT32 * ski pped

)

Description

This function returns the count of transmission attempts and the number of problems that have occurred.

Preconditions

None
Parameters
Parameters Description
which Indicates which MTU to check.
count Return value for the count of packet transmission attempts.
skipped Return value for the number of packet transmission failures.
Function

void GetSQDetails(INT16 which, UINT32 *count, UINT32 *skipped)

GetUptimeSec Function

Returns the time that the stack has been active
File

ginsu.h
Cc

I NT32 Get Upti nmeSec();
Description

This function returns that amount of time that has passed since the stack began running.

ginsu

22

5.1 Functions Microchip Google PowerMeter Reference

Preconditions

None

Return Values

Return Values Description
INT32 The number of seconds the stack has been running.
Function

INT32 GetUptimeSec(void)

GetUtcTimeSec Function

Returns a UTC timestamp
File
ginsu.h

Cc

I NT32 Get Ut cTi neSec();
Description

This function returns a UTC timestamp to the Google PowerMeter code.
Preconditions

None

Return Values

Return Values Description
INT32 The UTC timestamp
Function

INT32 GetUtcTimeSec(void)

GetWebPort Function

Returns the web port to use to communicate
File
ginsu.h

Cc

U NT16 Get WebPort ();
Description

Returns the web port to use to communicate
Preconditions

None

Return Values

Return Values Description
UINT16 The web port
Function

UINT16 GetWebPort(void)

ginsu

23

5.1 Functions Microchip Google PowerMeter Reference ginsu

GInitForWork Function

Initializes the Google PowerMeter state machine.
File

ginsu.h
Cc

voi d G nitForWrk();
Description

This code will initialize the Google PowerMeter state machine. It will set the initial capture attempt timestamp and set the flag
indicating that the next transmission will be an initial transmission. This function should be called while the system is booting
after the device modules (like the TCP/IP stack and sensors) are initialized.

Preconditions
None
Function
void GlnitForWork(void)

GPollForWork Function

Task for the Google PowerMeter application
File

ginsu.h
C

voi d GPol | ForWrk();
Description

This function checks if any Google PowerMeter subtasks must be executed. If so, it will execute them. This function must be
called periodically to enable the Google PowerMeter functionality.

Preconditions

None

Function
void GPollForWork(void)

GSendInit Function

Sets the next communication to an initial communication.
File
ginsu.h

Cc

voi d GSendl ni t(
Ul NT8 send_now
)

24

5.1 Functions Microchip Google PowerMeter Reference

Description

This function forces GSend() to treat the next communication as an initial communication.

Preconditions

None
Parameters

Parameters Description

send_now Forces the module to send any queued data immediately.
Function

void GSendInit(UINT8 send_now)

GUpdateNVRam Function

Updates non-volatile memory with the current hash values
File

ginsu.h
C

voi d GUpdat eNVRam() ;
Description

Updates non-volatile memory with the current hash values
Preconditions

None
Function

void GUpdateNVRam(void)

PadBuffer Function

Pads a hour/minute/second value to include a leading zero
File
ginsu.c

C

voi d PadBuf fer (
DWORD val ue,
BYTE * buffer

)

Description

This function will check a time value to determine if it's a single digit value. If so, it will insert a leading zero.

Preconditions

None
Parameters
Parameters Description
value The time value
buffer The string to be updated

ginsu

25

5.1 Functions Microchip Google PowerMeter Reference

Function

void PadBuffer (DWORD value, BYTE * buffer)

SensorStillActive Function

Determines if a given sensor is still active.
File
ginsu.h

C

I NT8 SensorStill Active(
I NT16 whi ch_sensor
)

Description

Determines if a given sensor is still active.

Preconditions

None

Parameters
Parameters Description
which_sensor The sensor to check

Return Values

Return Values Description

TRUE The sensor is active

FALSE The sensor is inactive
Function

INT8 SensorStillActive(INT16 which_sensor)

SetHashListEntry Function

Sets the value of a public key hash
File
ginsu.h

Cc

voi d Set HashLi st Entry(
| NT8 * hash,
I NT8 hash_sl ot

)

Description

Sets the value of a public key hash

Preconditions

None
Parameters
Parameters Description
hash Pointer to the new hash value.

ginsu

26

5.1 Functions Microchip Google PowerMeter Reference MainDemo

hash_slot The hash to replace with the new value.

Function
void SetHashListEntry(INT8 *hash, INT8 hash_slot)

SetupCalculatePubKeyHash Function

Sets up the check of the public key hash from the Google servers.
File
ginsu.h

C

voi d Set upCal cul at ePubKeyHash(
Ul NT8 socket
)

Description
Sets up the check of the public key hash from the Google servers. This function will clear the G_PUBKEY_INFO structure.

Preconditions

None
Parameters

Parameters Description

socket The socket to set up the hash for.
Function

void SetupCalculatePubKeyHash(UINT8 socket)

MainDemo
Functions
Name Description
“ InitNVMemContents (@ see | None
page 27)
“ ProcessIO (& see page 28) Processes A/D data from the potentiometer
@ SaveNVMemcContents (@ see 'Writes configuration values to non-volatile memory
page 28)
@ SavePowerMeterPreferences |Writes Power Meter preferences to non-volatile storage
(= see page 29)
Description

Describes application functions implemented in MainDemo.c.

InitNVMemContents Function

File

MainDemo.c

27

5.1 Functions Microchip Google PowerMeter Reference

Cc
static void InitNvMenContents();
Side Effects
None
Returns
Write/Read non-volatile config variables.
Description
None
Remarks
None
Preconditions
MPFSInit() is already called.
Function
void InitNVMemContents(void)

ProcesslO Function

File

MainDemo.c
C

static void Processl Q();
Description

Processes A/D data from the potentiometer

SaveNVMemContents Function

File
MainDemo.h
C
voi d SaveNvMenContents();
Side Effects
None
Returns
None.
Description
Writes configuration values to non-volatile memory
Remarks
None
Preconditions

Valid config values have been loaded or generated

MainDemo

28

5.2 Structures

Function

Microchip Google PowerMeter Reference

void SaveNVMemContents(void)

File

MainDemo.h

C

voi d SavePower Met er Pr ef er ences() ;

Side Effects

None

Returns

None.

Description

SavePowerMeterPreferences Function

Writes Power Meter preferences to non-volatile storage

Remarks

None

Preconditions

Valid Power Meter preferences have been loaded or generated

Function

void SavePowerMeterPreferences(void)

Structures

Enumerations

<<(

=

<<(

IR AR 2B

Structures

<<(

<<(

Name

GSTATUS_COUNTERS (@ see
page 30)

gstatus_counters_type (@ see page

30)

NV_MEM_STRUCTURE_OFFSETS

(@1 see page 31)

PMButtonState (@ see page 32)
PMCaptureMode (@ see page 32)
PREF_LIST (& see page 33)
_pref_list (@ see page 33)

Name
G_PKEY_INFO (@ see page 30)

_g_pkey_info (@ see page 30)

Description
Enumeration of application counters

Enumeration of application counters
Enumeration for non-volatile memory allocation

Define an enumeration to handle our button-press state machine
Defines an enumeration that corresponds to our sensors
Enumeration for device preferences

Enumeration for device preferences

Description
Structure to store public key information

Structure to store public key information

29

5.2 Structures

(& see page 32)

Description

Describes the structures used by this demo.

Microchip Google PowerMeter Reference

G_PKEY_INFO Structure

File
ginsu.h

C

typedef struct _g_pkey_info {

I NT16 pub_size_bytes;
I NT8 pub_key[128];
I NT8 pub_e[3];
Ul NT8 pub_gui d;
} G_PKEY_I NFO

Members

Members

INT16 pub_size_bytes;
INT8 pub_key[128];
INT8 pub_e][3];

UINT8 pub_guid;

Description

Structure to store public key information

Description

The size of the public key, in bytes (128 max)
The public key modulus

The public key exponent

This is used as a TCP_SOCKET which is a BYTE

GSTATUS_COUNTERS Enumeration

Enumeration of application counters
File
gcounter.h

C

typedef enum gstatus_counters_type {

G_SEND_ATTEMPTO,
G_SEND_ATTEMPTL,
G_SEND_ATTEMPT2,
G_SEND_SUCCESS,

G SEND_RESULT,
G_BATCH_SEND_SUCCESS,
G_BATCH_SEND_RESULT,
G_STATUS_ATTEMPT,
G_STATUS_SUCCESS,

G_ERROR_TI MEOUT,
G_ERROR_BAD_STATE,
G_ERROR_NO_SEND_SPACE,
G_ERROR_BAD VALUE,
G_ERROR_NO_SOCKET,
G_CAPTURE_ATTEMPT,

GSTATUS_COUNTERS Enumeration

> POWER_METER_PREFERENCES | Structure defining Google PowerMeter Preferences (configuration options)

30

5.2 Structures

G_CAPTURE_SUCCESS,

G _TOTAL_STATUS_COUNTERS

} GSTATUS_COUNTERS;

Members

Members
G_SEND_ATTEMPTO
G_SEND_ATTEMPT1
G_SEND_ATTEMPT2
G_SEND_SUCCESS
G_SEND_RESULT
G_BATCH_SEND_SUCCESS
G_BATCH_SEND_RESULT
G_STATUS_ATTEMPT
G_STATUS_SUCCESS
G_STATUS_RESULT
G_PUBKEY_ATTEMPT
G_PUBKEY_SUCCESS
G_ERROR_TIMEOUT
G_ERROR_BAD_STATE

G_ERROR_NO_SEND_SPACE

G_ERROR_BAD_VALUE
G_ERROR_NO_SOCKET
G_CAPTURE_ATTEMPT

G_CAPTURE_SUCCESS

G_TOTAL_STATUS_COUNTERS

Description

Microchip Google PowerMeter Reference

Description

Send attempts for sensor 0
Send attempts for sensor 1
Send attempts for sensor 2

Count of successful data transmissions
Last data TX HTTP response code

Batch TX success count
Batch TX HTTP response code

Send attempts for status information
Count of successful status transmissions
Last status TX HTTP response code

Public key attemps

Public key successes
Number of timeout errors
Number of bad state errors

PMButtonState Enumeration

Number of errors caused by insufficient socket space

Number of bad value errors

Number of socket allocation failure errors

Number of capture attempts
Number of capture successes

Must always be the last enum value

These are the various events we want to keep track of. It is assumed there is a 4 byte entity behind each counter. In theory
the counter can also be used to hold a value instead (such as a failure code) by using get/set instead of increment.

NV_MEM_STRUCTURE_OFFSETS Enumeration

File

C

MainDemo.h

typedef enum {
identifierOfset = 0,
appConfi gOfset = 1,

power Met er Pr ef er encesOf f set

= si zeof (APP_CONFI G +1,

structureEndO fset = power Met er Pref erencesO f set +si zeof (PONER_METER PREFERENCES)

} NV_MEM STRUCTURE_OFFSETS;

Description

Enumeration for non-volatile memory allocation

31

5.2 Structures Microchip Google PowerMeter Reference POWER_METER_PREFERENCES

PMButtonState Enumeration

File
MainDemo.h

C

typedef enum {
SM I DLE = Ou,
SM_DEBOUNCE_ DOV,
SM_RELEASE _WAI T,
SM_DEBOUNCE_UP

} PMButtonState;

Description

Define an enumeration to handle our button-press state machine

PMCaptureMode Enumeration

File
MainDemo.h

C

typedef enum {
CM_TRI ANGLE = Ou,
CM PO,
CM_LEDS

} PMCapt ur eMbde;

Members

Members Description

CM_TRIANGLE = 0u Triangle wave sample sensor
CM_POT Potentiometer-based sample sensor
CM_LEDS LED-based sample sensor

Description

Defines an enumeration that corresponds to our sensors

POWER_METER_PREFERENCES Structure

File
MainDemo.h

C

typedef struct {
BYTE aut h_t oken[65] ;
BYTE aut h_pat h[193] ;
DWORD snonce;
BYTE pKeyHashes[3][20];
WORD cap_sec_interval;
WORD send_sec_interval;
BOCOL send_st at us;

32

5.3 Macros

} POVER_METER_PREFERENCES;

Members

Members

BYTE auth_token[65];
BYTE auth_path[193];
DWORD snonce;

BYTE pKeyHashes[3][20];
WORD cap_sec_interval;
WORD send_sec_interval;
BOOL send_status;

Description

Microchip Google PowerMeter Reference

Description

The user identification value

The data upload path

A security nonce

SHA-1 hashes of potential Google SSL certificaties
Data capture interval (in seconds)

Data transmission interval (in seconds)

Boolean - indicates whether to send status information

Structure defining Google PowerMeter Preferences (configuration options)

File

PREF_LIST Enumeration

ginsu.h

c

typedef enum _pref _list {
AUTH_TOKEN_STR,
AUTH_PATH_STR,
CAPTURE_SEC | NT,
SEND _SEC | NT
SEND_STATUS | NT

} PREF_LI ST;

Members

Members
AUTH_TOKEN_STR
AUTH_PATH_STR
CAPTURE_SEC_INT
SEND_SEC_INT
SEND_STATUS_INT

Description

Enumeration for device preferences

Macros

Macros

Name
APPLICATION_BUILD (@
see page 34)
DEVICE_MANUFACTURER
(@ see page 34)

DEVICE_MODEL (@ see
page 34)

Description

Authorization token

Authorization path

Frequency of capturing data (seconds)
Frequency of sending data to google (seconds)
boolean - send status to google (true) or not.

Description
Defines the build number

Defines the device manufacturer

Defines the device model

33

5.3 Macros Microchip Google PowerMeter Reference DEVICE_MODEL Macro

= DEVICE_NUM_SENSORS
(& see page 35)

< GOOGLE_DATA_PORT (@
see page 35)

- GOOGLE_HOST (@ see
page 35)

- GOOGLE_STATUS_PORT
(@ see page 35)

“ GQ_NUM_QUEUES (@ see
page 36)

- MAX_NUM_PUBKEY_HASH
(& see page 36)

“ PUBKEY_HASH_SIZE (@
see page 36)

Description

Describes the macros used by this demo.

Defines the number of sensors the device is using This value is based on the
GQ_NUM_QUEUES (@ see page 36) macro, defined in gqueue.h

Data port (https)

Google host address

Status port (https)

The number of queues we can support

Defines the maximum number of hashes stored by the application

Defines the size of a public key hash in bytes (SHA-1)

APPLICATION_BUILD Macro

File

MainDemo.h
C

#defi ne APPLI CATI ON_BUI LD 0x62
Description

Defines the build number

DEVICE_MANUFACTURER Macro

File
MainDemo.h

C

#def i ne DEVI CE_MANUFACTURER "M crochi p_Technol ogy"

Description

Defines the device manufacturer

DEVICE_MODEL Macro

File
MainDemo.h

C

#def i ne DEVI CE_MODEL "Expl orer 16_Denp"

34

5.3 Macros Microchip Google PowerMeter Reference GOOGLE_STATUS_PORT Macro

Description

Defines the device model

DEVICE_NUM_SENSORS Macro

File

MainDemo.h
C

#def i ne DEVI CE_NUM SENSORS GQ NUM QUEUES
Description

Defines the number of sensors the device is using This value is based on the GQ_NUM_QUEUES (@ see page 36) macro,
defined in gqueue.h

GOOGLE_DATA PORT Macro

File

ginsu.h
C

#def i ne GOOGLE_DATA PORT 443 /1 Data port (https)
Description

Data port (https)

GOOGLE_HOST Macro

File

ginsu.h
Cc

#defi ne GOOGLE_HOST "www. googl e. cont /' Googl e host address
Description

Google host address

GOOGLE_STATUS PORT Macro

File
ginsu.h

C
#def i ne GOOGLE_STATUS PORT 443 /1 Status port (https)

35

5.4 Variables Microchip Google PowerMeter Reference

Description
Status port (https)

GQ _NUM_ QUEUES Macro

File

gqueue.h
C

#defi ne GQ_NUM QUEUES 3
Description

The number of queues we can support

MAX_NUM_PUBKEY_ HASH Macro

File

ginsu.h
C

#def i ne MAX_NUM PUBKEY_ HASH 3
Description

Defines the maximum number of hashes stored by the application

PUBKEY_HASH_SIZE Macro

File

ginsu.h
Cc

#def i ne PUBKEY_HASH S| ZE 20
Description

Defines the size of a public key hash in bytes (SHA-1)

Variables

Variables
Name Description
’ AppConfig (& see page 37) Declare AppConfig structure
’ auth_path (@ see page 37) Pointer to the authorization path
’ auth_token (@ see page 38) | Pointer to the authorization token
’ captureMode (@ see page 38) Declare state tracking variables for buttons pushes and capture modes

36

5.4 Variables

Description

Describes the variables used by this demo.

Microchip Google PowerMeter Reference

gActivationConfirm (@ see
page 38)

gActivationStringl (@ see
page 38)

gActivationString2 (@ see
page 39)

gActivationString3 (@ see
page 39)

gActivationString4 (@ see
page 39)

gActivationString5 (@ see
page 39)

gActivationString6 (=@ see
page 40)

gCumulativePower (@ see
page 40)

goog_host (@ see page 40)
gpkey_info (@ see page 40)

gPowerMeterPreferences (&
see page 41)

StackStartTime (@ see page
41)

auth_token Variable

First fragment of the activation confirmation URL. Use gActivationString2 (@
see page 39) and gActivationString3 (& see page 39) as the second and third
fragments.

First fragment of the activation URL. Continues until manufacturer name is
required.

Second fragment of the activation URL. Continues until model name is required.
Third fragment of the activation URL. Continues until device ID is required.

Fourth fragment of the activation URL. Continues until the number of
cumulative variables is required.

Fifth fragment of the activation URL. Continues until the return URL is required.

Sixth fragment of the activation URL. Continues until the security nonce is
required. Contains the end of the return URL.

Declare an INT64 to contain the cumulative power consumption of the device or
circuit you're monitoring

Definition of the Google host hame; used in data and status messages
Public Key Structure Information

Declare POWER_METER_PREFERENCES (@ see page 32) structure to
contain required settings

Declare a variable to hold the stack's relative start time

AppConfig Variable

File
MainDemo.c

C

APP_CONFI G AppConfi g;

Description

Declare AppConfig structure

auth_path Variable

File
ginsu.c

C

const char * auth_path =

Description

Pointer to the authorization path

(const char *)gPower Met er Pref erences. aut h_pat h;

37

5.4 Variables Microchip Google PowerMeter Reference gActivationString2 Variable

auth_token Variable

File

ginsu.c
C

const char * auth_token = (const char *)gPower Meter Preferences. aut h_t oken;
Description

Pointer to the authorization token

captureMode Variable

File

MainDemo.h
Cc

PMCapt ur eMbde capt ur eMbde;
Description

Declare state tracking variables for buttons pushes and capture modes

gActivationConfirm Variable

File

CustomHTTPApp.c
Cc

ROM char gActivationConfirni] = "https://ww. googl e. conf power met er/ devi ce/ fi ni sh?nf g=";
Description

First fragment of the activation confirmation URL. Use gActivationString2 (@ see page 39) and gActivationString3 (@ see
page 39) as the second and third fragments.

gActivationStringl Variable

File

CustomHTTPApp.c
Cc

ROM char gActivationStringl[] = "https://ww. googl e. conf power et er/ devi ce/ acti vat e?nf g=";
Description

First fragment of the activation URL. Continues until manufacturer name is required.

38

5.4 Variables Microchip Google PowerMeter Reference

gActivationString2 Variable

File

CustomHTTPApp.c
C

ROM char gActivationString2[] = "&mwdel =";
Description

Second fragment of the activation URL. Continues until model name is required.

gActivationString3 Variable

File

CustomHTTPApp.c
Cc

ROM char gActivationString3[] = "&did=";
Description

Third fragment of the activation URL. Continues until device ID is required.

gActivationString4 Variable

File
CustomHTTPApp.c
C
ROM char gActivationString4[] = "&cvars=";

Description

gActivationString6 Variable

Fourth fragment of the activation URL. Continues until the number of cumulative variables is required.

gActivationString5 Variable

File

CustomHTTPApp.c
Cc

ROM char gActivationString5[] = "&url=http://";
Description

Fifth fragment of the activation URL. Continues until the return URL is required.

39

5.4 Variables Microchip Google PowerMeter Reference gPowerMeterPreferences Variable

gActivationString6 Variable

File

CustomHTTPApp.c
C

ROM char gActivationString6[] = "/return. htm&snonce=";
Description

Sixth fragment of the activation URL. Continues until the security nonce is required. Contains the end of the return URL.

gCumulativePower Variable

File

MainDemo.c
Cc

I NT64 gCurrul ati vePower [3] ;
Description

Declare an INT64 to contain the cumulative power consumption of the device or circuit you're monitoring

goog_host Variable

File

gstatus.c
Cc

ROM BYTE goog_host[];
Description

Definition of the Google host name; used in data and status messages

gpkey_info Variable

File

ginsu.h
Cc

G_PKEY_| NFO gpkey_i nf o;
Description

Public Key Structure Information

40

5.4 Variables Microchip Google PowerMeter Reference

gPowerMeterPreferences Variable

File

MainDemo.h
C

PONER_METER _PREFERENCES gPower Met er Pr ef er ences;
Description

Declare POWER_METER_PREFERENCES (@ see page 32) structure to contain required settings

StackStartTime Variable

File

MainDemo.c
Cc

DWORD St ackStartTine = O;
Description

Declare a variable to hold the stack's relative start time

StackStartTime Variable

41

Microchip Google PowerMeter Reference

Index

_g_pkey_info structure 30

_pref_list enumeration 33

Additional Information 1

AppConfig variable 37

Application API 14

APPLICATION_BUILD macro 34

auth_path variable 37

AUTH_PATH_STR enumeration member 33
auth_token variable 38

AUTH_TOKEN_STR enumeration member 33

Authentication 7

CalculatePubKeyHash function 17
CAPTURE_SEC_INT enumeration member 33
captureMode variable 38

Configuration and Programming 6
ConvertUtcSecToString function 17

Creating a Custom Application 11
CustomHTTPApp 14

Development Tools 4
DEVICE_MANUFACTURER macro 34
DEVICE_MODEL macro 34
DEVICE_NUM_SENSORS macro 35

Firmware Requirements 4

Functions 14

G_CAPTURE_SUCCESS enumeration member 30
G_ERROR_BAD_STATE enumeration member 30
G_ERROR_BAD_VALUE enumeration member 30

G_ERROR_NO_SEND_SPACE enumeration member 30

G_ERROR_NO_SOCKET enumeration member 30
G_ERROR_TIMEOUT enumeration member 30
G_PKEY_INFO structure 30
G_PUBKEY_ATTEMPT enumeration member 30
G_PUBKEY_SUCCESS enumeration member 30
G_SEND_ATTEMPTO enumeration member 30
G_SEND_ATTEMPT1 enumeration member 30
G_SEND_ATTEMPT2 enumeration member 30
G_SEND_RESULT enumeration member 30
G_SEND_SUCCESS enumeration member 30
G_STATUS_ATTEMPT enumeration member 30
G_STATUS_RESULT enumeration member 30
G_STATUS_SUCCESS enumeration member 30

G_TOTAL_STATUS_COUNTERS enumeration member 30

gActivationConfirm variable 38
gActivationStringl variable 38
gActivationString2 variable 39
gActivationString3 variable 39
gActivationString4 variable 39
gActivationString5 variable 39
gActivationString6 variable 40
gCumulativePower variable 40
GetBuildNumber function 18
GetCumulativePower function 18
GetHashListEntry function 19
Getlpv4 function 19

GetMac function 20
GetPreferencelnt32 function 20
GetPreferenceStr function 21
GetSQ function 21
GetSQDetails function 22
Getting Help 2

GetUptimeSec function 22
GetUtcTimeSec function 23
GetWebPort function 23
GlnitForWork function 24

G_BATCH_SEND_RESULT enumeration member 30
G_BATCH_SEND_SUCCESS enumeration member 30
G_CAPTURE_ATTEMPT enumeration member 30

ginsu 16

goog_host variable 40

Microchip Google PowerMeter Reference

GOOGLE_DATA_PORT macro 35 PUBKEY_HASH_SIZE macro 36
GOOGLE_HOST macro 35
GOOGLE_STATUS_PORT macro 35
gpkey_info variable 40

GPollForWork function 24

Running the Demos 4

gPowerMeterPreferences variable 41
GQ_NUM_QUEUES macro 36
GSendInit function 24
GSTATUS_COUNTERS enumeration 30

SaveNVMemContents function 28
SavePowerMeterPreferences function 29
SEND_SEC_INT enumeration member 33

gstatus_counters_type enumeration 30)
SEND_STATUS_INT enumeration member 33

GUpdateNVRam function 25)))
SensorStillActive function 26

SetHashListEntry function 26
SetupCalculatePubKeyHash function 27
How the Application Works 10 StackStartTime variable 41
How the Web Page Works 10
HTTPDeactivateDevice function 14
HTTPPostAuthenticate function 15
HTTPPostAuthinfo function 15

Structures 29

SW License Agreement 3

Using the Code 10

InitNVMemContents function 27

Introduction 1)
Variables 36

Macros 33
MainDemo 27

MAX_NUM_PUBKEY_HASH macro 36

NV_MEM_STRUCTURE_OFFSETS enumeration 31

Operation 8

PadBuffer function 25

PMButtonState enumeration 32
PMCaptureMode enumeration 32
POWER_METER_PREFERENCES structure 32
PREF_LIST enumeration 33

ProcessIO function 28

	Microchip Google PowerMeter Reference Implementation Help
	Table of Contents
	Introduction
	Additional Information
	Getting Help

	SW License Agreement
	Running the Demos
	Firmware Requirements
	Development Tools
	Configuration and Programming
	Authentication
	Operation

	Using the Code
	How the Application Works
	How the Web Page Works
	Creating a Custom Application

	Application API
	Functions
	CustomHTTPApp
	HTTPDeactivateDevice Function
	HTTPPostAuthenticate Function
	HTTPPostAuthInfo Function

	ginsu
	CalculatePubKeyHash Function
	ConvertUtcSecToString Function
	GetBuildNumber Function
	GetCumulativePower Function
	GetHashListEntry Function
	GetIpv4 Function
	GetMac Function
	GetPreferenceInt32 Function
	GetPreferenceStr Function
	GetSQ Function
	GetSQDetails Function
	GetUptimeSec Function
	GetUtcTimeSec Function
	GetWebPort Function
	GInitForWork Function
	GPollForWork Function
	GSendInit Function
	GUpdateNVRam Function
	PadBuffer Function
	SensorStillActive Function
	SetHashListEntry Function
	SetupCalculatePubKeyHash Function

	MainDemo
	InitNVMemContents Function
	ProcessIO Function
	SaveNVMemContents Function
	SavePowerMeterPreferences Function

	Structures
	G_PKEY_INFO Structure
	GSTATUS_COUNTERS Enumeration
	NV_MEM_STRUCTURE_OFFSETS Enumeration
	PMButtonState Enumeration
	PMCaptureMode Enumeration
	POWER_METER_PREFERENCES Structure
	PREF_LIST Enumeration

	Macros
	APPLICATION_BUILD Macro
	DEVICE_MANUFACTURER Macro
	DEVICE_MODEL Macro
	DEVICE_NUM_SENSORS Macro
	GOOGLE_DATA_PORT Macro
	GOOGLE_HOST Macro
	GOOGLE_STATUS_PORT Macro
	GQ_NUM_QUEUES Macro
	MAX_NUM_PUBKEY_HASH Macro
	PUBKEY_HASH_SIZE Macro

	Variables
	AppConfig Variable
	auth_path Variable
	auth_token Variable
	captureMode Variable
	gActivationConfirm Variable
	gActivationString1 Variable
	gActivationString2 Variable
	gActivationString3 Variable
	gActivationString4 Variable
	gActivationString5 Variable
	gActivationString6 Variable
	gCumulativePower Variable
	goog_host Variable
	gpkey_info Variable
	gPowerMeterPreferences Variable
	StackStartTime Variable

	Index

